From b9e2609169709f8aad257fa5e3a92cb780dfad3f Mon Sep 17 00:00:00 2001 From: Justin Gassner Date: Sun, 19 May 2024 01:45:37 +0200 Subject: weiter --- analytic2.tex | 135 ++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 135 insertions(+) create mode 100644 analytic2.tex (limited to 'analytic2.tex') diff --git a/analytic2.tex b/analytic2.tex new file mode 100644 index 0000000..e0dc68f --- /dev/null +++ b/analytic2.tex @@ -0,0 +1,135 @@ +\chapter{Analytic Vectors} + +\info{Dies ist nur ein Relikt meines Studiums analytischer Vektoren. Wird wieder entfernt, falls nicht benötigt.} + +\begin{definition}{Analytic Vector for an Operator}{analytic-vector-operator} + Let $A : D(A) \to \hilb{H}$ be an unbounded linear operator in a complex Hilbert space $\hilb{H}$. + A vector $x \in \hilb{H}$ is said to be an \emph{analytic vector} for $A$, + if $x$ lies in the domain of the power $A^n$ for all $n \in \NN$, and the power series + \begin{equation*}\tag{power-series-analytic-vector} + \sum_{n=0}^{\infty} \frac{A^n x}{n!} \, z^n + \end{equation*} + has a nonzero radius of convergece. + If the power series converges for all $z \in \CC$, + we say that $x$ is an \emph{entire analytic vector} for $A$. +\end{definition} +Note that, if $x$ is analytic for $A$, then the power series +\begin{equation*} + \sum_{n=0}^{\infty} \frac{\norm{A^n x}}{n!} \, z^n +\end{equation*} +converges for all complex $z$ with $\abs{z} < t$, +that is, in the open disc with radius $t$ centered in the origin of the complex plane. +This is a well-known consequence of the convergence behavior of power series. + +\begin{definition}{Analyticity of Vector-Valued Functions}{} + Let $G \subset \CC$ be open and let $\hilb{H}$ be a Hilbert space. + A function $f : G \to \hilb{H}$ is called + \begin{itemize} + \item \emph{strongly analytic} at $a \in G$, if the limit + \begin{equation*} + \lim_{z \to a} \frac{f(z) - f(a)}{z-a} + \end{equation*} + exists in norm. + \item \emph{weakly analytic} in $a \in G$, if for each $w \in \CC$ the scalar-valued function + \begin{equation*} + G \longrightarrow \CC, \quad z \longmapsto \innerp{w}{f(z)} + \end{equation*} + is analytic in $a$. + \end{itemize} +\end{definition} + +\begin{lemma}{Equivalence of Weak and Strong Analyticity}{} + Let $G \subset \CC$ be open. + Then a Banach space-valued function is strongly analytic on $G$ if and only if it is weakly analytic on $G$. +\end{lemma} +\begin{myproof} + Let $X$ be a Banach space and suppose that the function $f : G \to X$ is weakly analytic. + By definition, for each $g \in X'$ the scalar valued function $g \circ f : G \to \CC$ is analytic on $G$. + Consider a point $a \in G$. + Since $G$ is open, there exists a circular contour $\gamma$ around $a$ such that $\gamma$ and its interior lie wholly inside of $G$. + By Cauchy’s Integral Formula we have + \begin{equation*} + g(f(z)) = \frac{1}{2 \pi i} \int_{\gamma} \frac{g(f(w))}{w-z} \, dw + \end{equation*} + for any $z$ in the interior of $\gamma$. + Writing + \begin{equation*} + Q(z) = \frac{f(z) - f(a)}{z - a} + \end{equation*} + for the difference quotient, we get + \begin{equation*} + g(Q(z)) = \frac{1}{2 \pi i} \int_{\gamma} \frac{g(f(w))}{(w-z)(w-a)} \, dw + \end{equation*} + and + \begin{equation*} + g \parens*{\frac{Q(z) - Q(z')}{z - z'}} = \frac{1}{2 \pi i} \int_{\gamma} \frac{g(f(w))}{(w-z)(w-z')(w-a)} \, dw + \end{equation*} + for all $z,z'$ in the interior of $\gamma$. + The family of vectors $f(w) \in X$, indexed by complex numbers $w$ on the contour $\gamma$, can be viewed as a family of bounded linear functionals $C(f(w)) : X' \to \CC$ + via the canonical embedding $C : X \to X''$ of $X$ into its bidual. For every fixed $g \in X'$ the set of values $C(f(w))(g) = g(f(w))$ is bounded, because the function $g \circ f$ is continous and the contour is compact. + In other words, the family of functionals $C(f(w))$, $w \in \gamma$, is pointwise bounded. + The Uniform Boundedness Theorem implies that there exists a constant $M > 0$ such that $\abs{g(f(w))} \le M \norm{g}$ for all $w$ on $\gamma$ and all $g \in X'$. + \begin{equation*} + \abs*{g \parens*{\frac{Q(z) - Q(z')}{z - z'}}} \le \frac{M}{2 \pi} \norm{g} \int_{\gamma} \frac{dw}{\abs{w-z}\abs{w-z'}\abs{w-a}} + \end{equation*} + If we restict $z,z'$ to a neighbourhood $N$ of $a$ that stays away from $\gamma$, then the integral on the right hand side is + bounded by a constant independent of $z$ and $z'$. + Absorbing all constants into $M' > 0$ we obtain + \begin{equation*} + \abs{g(Q(z) - Q(z'))} \le M' \norm{g} \abs{z-z'} \quad \forall z,z' \in N. + \end{equation*} + \begin{equation*} + \norm{Q(z) - Q(z')} = \sup_{\substack{g \in X'\\ \norm{g} \le 1}} \abs{g(Q(z) - Q(z'))} \le M' \norm{z - z'}. + \end{equation*} + Hence, the limit of $Q(z)$ for $z \to a$ exists by completeness of $X$. +\end{myproof} + +\begin{definition}{Analytic Vector for an Unitary Group}{analytic-vector-unitary-group} + Let $\sigma : \RR \to U(\hilb{H})$ be a strongly continuous one-parameter unitary group on a complex Hilbert space $\hilb{H}$. + A vector $x \in \hilb{H}$ is said to be an \emph{analytic vector} for $\sigma$, if there exist + \begin{itemize} + \item a number $\lambda > 0$, defining a strip $I_{\lambda} = \braces{z : \abs{\Im z} < 1}$, and + \item a vector-valued function $f : I_{\lambda} \to \hilb{H}$, + \end{itemize} + with the properties that + \begin{itemize} + \item $f(t) = \sigma_t(x)$ for all $t \in \RR$, + \item $f$ is weakly analytic on $I_{\lambda}$. + \end{itemize} + In this case we write $f(z) = \sigma_z(x)$ for $z \in I_{\lambda}$. +\end{definition} + +\begin{proposition}{}{} + Let $\sigma : \RR \to U(\hilb{H})$ be a strongly continuous one-parameter unitary group on a complex Hilbert space $\hilb{H}$ + and let $A$ be its infinitesimal generator. + Then a vector $x \in \hilb{H}$ is analytic for $\sigma$ if and only if it is analytic for $A$. +\end{proposition} + +\begin{myproof} + First, suppose that $x$ is an analytic vector for $\sigma$. + Then, there exist a number $\lambda > 0$ and a function $f : I_{\lambda} \to X$ as in \cref{definition:analytic-vector-unitary-group}. + In particular, $f$ is (strongly) analytic on the strip $I_{\lambda}$, which contains the disk $\braces{z : \abs{z} \le r}$ when $r \le \lambda$. + Hence we have Cauchy estimates + \begin{equation*} + \norm{f^{(n)}(0)} \le \frac{n!}{r^n} M \quad \forall n \in \NN, + \quad \text{where} \ M = \sup_{\abs{z} = r} \norm{f(z)}. + \end{equation*} + For real $t$ we have $f(t) = \sigma_t(x) = \exp(itA) x$ and + the mapping $t \mapsto f(t)$ is strongly differentiable with derivatives + $f^{(n)}(0) = (iA)^n x$. + This implies that the power series + \begin{equation*} + \sum_{n=0}^{\infty} \frac{\norm{A^n x}}{n!} t^n \le M \sum_{n=0}^{\infty} \frac{t^n}{r^n} + \end{equation*} + is convergent for $t \le \lambda$ by majorization. Hernce $x$ is an analytic vector for the operator $A$. + + Coversely, suppose that $x$ is analytic for the generator $A$ of $\sigma$. + Then, by \cref{definition:analytic-vector-operator}, $x$ lies in the domains of all powers $A^n$, $n \in \NN$, and the power series + \begin{equation*} + \sum_{n=0}^{\infty} \frac{\norm{A^n x}}{n!} z^n + \end{equation*} + has a positive radius of convergence $t>0$. +\end{myproof} + +\chapterbib +\cleardoublepage -- cgit v1.2.3-70-g09d2