From c66c3bc73d5d627ec7051e9ada6316c98ae072e0 Mon Sep 17 00:00:00 2001 From: Justin Gassner Date: Wed, 29 May 2024 14:04:59 +0200 Subject: weiter --- convolution.tex | 63 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 63 insertions(+) create mode 100644 convolution.tex (limited to 'convolution.tex') diff --git a/convolution.tex b/convolution.tex new file mode 100644 index 0000000..d3fb8bc --- /dev/null +++ b/convolution.tex @@ -0,0 +1,63 @@ +\chapter{A Convolution Formula for Vector-Valued Tempered Distributions} +\label{chapter:convolution} + +\blockcquote{Bisognano1975}{% + The extension to vector-valued tempered distributions is trivial. +} +Recall that the class $\schwartz{\RR^n}$ of complex-valued Schwartz functions on $\RR^n$ +is closed under convolution, a operation that assigns to functions $f$ and $g$ a third one, $f * g$, +given by +\begin{equation*} + (f*g)(x) = \int f(x-y) g(y) \, dy + \qquad x \in \RR^n. +\end{equation*} + +\begin{definition}{Convolution of a Distribution with a Test Function}{} + Let $u \in \tempdistrib{\RR^n}$ be tempered distribution and + let $f \in \schwartz{\RR^n}$ be a Schwartz test function. + Then the \emph{convolution} of $u$ with $f$ is + the tempered distribution $u * f \in \tempdistrib{\RR^n}$ defined by + \begin{equation*} + (u * f)(g) \defequal u(\tilde{f} * g) \qquad g \in \schwartz{\RR^n}, + \end{equation*} + where $\tilde{f}(x) = f(-x)$ for all $x \in \RR^n$. +\end{definition} +It is well-known that the convolution can be expressed by the integral +\begin{equation*} + (u * f)(g) = \int u(\tau_x \tilde{f}@@) g(x) \, dx +\end{equation*} +emphasizing its character of a smoothing operation. +The purpose of this appendix is to state and prove +a vector-valued version of this formula. + +Let $X$ be a complex Banach space. +Denote by $C^{\infty}(\RR^n,X)$ the vector space of all functions $f : \RR^n \to X$ +such that the derivatives $\partial^{\alpha} f$ exist and are continuous for all multi-indices $\alpha \in \NN^n$. +We define the space $\schwartz{\RR^n,X}$ of \emph{$X$-valued Schwartz functions} to be the vector space +\begin{equation*} + \schwartz{\RR^n,X} \defequal \braces{f \in C^{\infty}(\RR^n,X) \vcentcolon \norm{f}_{\alpha,\beta} < \infty \forall \alpha,\beta \in \NN^n} +\end{equation*} +equipped with the locally convex topology induced by the family of seminorms +\begin{equation*} + \norm{f}_{\alpha,\beta} = \sup_{x \in \RR^n} \abs{x^{\alpha}} \norm{\partial^{\beta} f(x)}_X. +\end{equation*} +We define the space $\tempdistrib{\RR^n,X}$ of \emph{$X$-valued tempered distributions} to be the vector space +\begin{equation*} + \tempdistrib{\RR^n,X} \defequal \BoundedLinearOperators[\big]{\schwartz{\RR^n},X}. +\end{equation*} +equipped with the bounded convergence topology. + +\begin{proposition}{Vector-Valued Convolution Formula}{} + Let $v \in \tempdistrib{\RR^n,X}$ be tempered distribution with values in a Banach space $X$, and + let $f \in \schwartz{\RR^n}$ be a Schwartz test function. Then one has + \begin{equation*} + (v * f)(g) = \int v(\tau_x \tilde{f}@@) g(x) \, dx \qquad g \in \schwartz{\RR^n}. + \end{equation*} +\end{proposition} + +Der Beweis ist in Arbeit ;) + +%\nomenclature[B]{$\BoundedLinearOperators{X,Y}$}{bounded linear operators from $X$ to $Y$\nomnorefpage} + +\chapterbib +\cleardoublepage -- cgit v1.2.3-70-g09d2