\chapter{Analytic Vectors} \info{Dies ist nur ein Relikt meines Studiums analytischer Vektoren. Wird wieder entfernt, falls nicht benötigt.} \begin{definition}{Analytic Vector for an Operator}{analytic-vector-operator} Let $A : D(A) \to \hilb{H}$ be an unbounded linear operator in a complex Hilbert space $\hilb{H}$. A vector $x \in \hilb{H}$ is said to be an \emph{analytic vector} for $A$, if $x$ lies in the domain of the power $A^n$ for all $n \in \NN$, and the power series \begin{equation*}\tag{power-series-analytic-vector} \sum_{n=0}^{\infty} \frac{A^n x}{n!} \, z^n \end{equation*} has a nonzero radius of convergence. If the power series converges for all $z \in \CC$, we say that $x$ is an \emph{entire analytic vector} for $A$. \end{definition} Note that, if $x$ is analytic for $A$, then the power series \begin{equation*} \sum_{n=0}^{\infty} \frac{\norm{A^n x}}{n!} \, z^n \end{equation*} converges for all complex $z$ with $\abs{z} < t$, that is, in the open disc with radius $t$ centered in the origin of the complex plane. This is a well-known consequence of the convergence behavior of power series. \begin{definition}{Analyticity of Vector-Valued Functions}{} Let $G \subset \CC$ be open and let $\hilb{H}$ be a Hilbert space. A function $f : G \to \hilb{H}$ is called \begin{itemize} \item \emph{strongly analytic} at $a \in G$, if the limit \begin{equation*} \lim_{z \to a} \frac{f(z) - f(a)}{z-a} \end{equation*} exists in norm. \item \emph{weakly analytic} in $a \in G$, if for each $w \in \CC$ the scalar-valued function \begin{equation*} G \longrightarrow \CC, \quad z \longmapsto \innerp{w}{f(z)} \end{equation*} is analytic in $a$. \end{itemize} \end{definition} \begin{lemma}{Equivalence of Weak and Strong Analyticity}{} Let $G \subset \CC$ be open. Then a Banach space-valued function is strongly analytic on $G$ if and only if it is weakly analytic on $G$. \end{lemma} \begin{myproof} Let $X$ be a Banach space and suppose that the function $f : G \to X$ is weakly analytic. By definition, for each $g \in X'$ the scalar valued function $g \circ f : G \to \CC$ is analytic on $G$. Consider a point $a \in G$. Since $G$ is open, there exists a circular contour $\gamma$ around $a$ such that $\gamma$ and its interior lie wholly inside of $G$. By Cauchy’s Integral Formula we have \begin{equation*} g(f(z)) = \frac{1}{2 \pi i} \int_{\gamma} \frac{g(f(w))}{w-z} \, dw \end{equation*} for any $z$ in the interior of $\gamma$. Writing \begin{equation*} Q(z) = \frac{f(z) - f(a)}{z - a} \end{equation*} for the difference quotient, we get \begin{equation*} g(Q(z)) = \frac{1}{2 \pi i} \int_{\gamma} \frac{g(f(w))}{(w-z)(w-a)} \, dw \end{equation*} and \begin{equation*} g \parens*{\frac{Q(z) - Q(z')}{z - z'}} = \frac{1}{2 \pi i} \int_{\gamma} \frac{g(f(w))}{(w-z)(w-z')(w-a)} \, dw \end{equation*} for all $z,z'$ in the interior of $\gamma$. The family of vectors $f(w) \in X$, indexed by complex numbers $w$ on the contour $\gamma$, can be viewed as a family of bounded linear functionals $C(f(w)) : X' \to \CC$ via the canonical embedding $C : X \to X''$ of $X$ into its bidual. For every fixed $g \in X'$ the set of values $C(f(w))(g) = g(f(w))$ is bounded, because the function $g \circ f$ is continuous and the contour is compact. In other words, the family of functionals $C(f(w))$, $w \in \gamma$, is pointwise bounded. The Uniform Boundedness Theorem implies that there exists a constant $M > 0$ such that $\abs{g(f(w))} \le M \norm{g}$ for all $w$ on $\gamma$ and all $g \in X'$. \begin{equation*} \abs*{g \parens*{\frac{Q(z) - Q(z')}{z - z'}}} \le \frac{M}{2 \pi} \norm{g} \int_{\gamma} \frac{dw}{\abs{w-z}\abs{w-z'}\abs{w-a}} \end{equation*} If we restrict $z,z'$ to a neighborhood $N$ of $a$ that stays away from $\gamma$, then the integral on the right hand side is bounded by a constant independent of $z$ and $z'$. Absorbing all constants into $M' > 0$ we obtain \begin{equation*} \abs{g(Q(z) - Q(z'))} \le M' \norm{g} \abs{z-z'} \quad \forall z,z' \in N. \end{equation*} \begin{equation*} \norm{Q(z) - Q(z')} = \sup_{\substack{g \in X'\\ \norm{g} \le 1}} \abs{g(Q(z) - Q(z'))} \le M' \norm{z - z'}. \end{equation*} Hence, the limit of $Q(z)$ for $z \to a$ exists by completeness of $X$. \end{myproof} \begin{definition}{Analytic Vector for an Unitary Group}{analytic-vector-unitary-group} Let $\sigma : \RR \to U(\hilb{H})$ be a strongly continuous one-parameter unitary group on a complex Hilbert space $\hilb{H}$. A vector $x \in \hilb{H}$ is said to be an \emph{analytic vector} for $\sigma$, if there exist \begin{itemize} \item a number $\lambda > 0$, defining a strip $I_{\lambda} = \braces{z : \abs{\Im z} < 1}$, and \item a vector-valued function $f : I_{\lambda} \to \hilb{H}$, \end{itemize} with the properties that \begin{itemize} \item $f(t) = \sigma_t(x)$ for all $t \in \RR$, \item $f$ is weakly analytic on $I_{\lambda}$. \end{itemize} In this case we write $f(z) = \sigma_z(x)$ for $z \in I_{\lambda}$. \end{definition} \begin{proposition}{}{} Let $\sigma : \RR \to U(\hilb{H})$ be a strongly continuous one-parameter unitary group on a complex Hilbert space $\hilb{H}$ and let $A$ be its infinitesimal generator. Then a vector $x \in \hilb{H}$ is analytic for $\sigma$ if and only if it is analytic for $A$. \end{proposition} \begin{myproof} First, suppose that $x$ is an analytic vector for $\sigma$. Then, there exist a number $\lambda > 0$ and a function $f : I_{\lambda} \to X$ as in \cref{definition:analytic-vector-unitary-group}. In particular, $f$ is (strongly) analytic on the strip $I_{\lambda}$, which contains the disk $\braces{z : \abs{z} \le r}$ when $r \le \lambda$. Hence we have Cauchy estimates \begin{equation*} \norm{f^{(n)}(0)} \le \frac{n!}{r^n} M \quad \forall n \in \NN, \quad \text{where} \ M = \sup_{\abs{z} = r} \norm{f(z)}. \end{equation*} For real $t$ we have $f(t) = \sigma_t(x) = \exp(itA) x$ and the mapping $t \mapsto f(t)$ is strongly differentiable with derivatives $f^{(n)}(0) = (iA)^n x$. This implies that the power series \begin{equation*} \sum_{n=0}^{\infty} \frac{\norm{A^n x}}{n!} t^n \le M \sum_{n=0}^{\infty} \frac{t^n}{r^n} \end{equation*} is convergent for $t \le \lambda$ by majorization. Hence $x$ is an analytic vector for the operator $A$. Conversely, suppose that $x$ is analytic for the generator $A$ of $\sigma$. Then, by \cref{definition:analytic-vector-operator}, $x$ lies in the domains of all powers $A^n$, $n \in \NN$, and the power series \begin{equation*} \sum_{n=0}^{\infty} \frac{\norm{A^n x}}{n!} z^n \end{equation*} has a positive radius of convergence $t>0$. \end{myproof} \chapterbib \cleardoublepage