%\chapter[Scales of Hilbert Spaces and Nelsons Commutator Theorem]{Scales of Hilbert Spaces\\ and Nelsons Commutator Theorem} \chapter{Scales of Hilbert Spaces and~Nelsons~Commutator~Theorem} \begin{theorem}{Nelson Commutator Theorem}{nelson-commutator-theorem} Let $N$ be a selfadjoint operator with $N \ge I$, and let $q$ be a quadratic form with the same domain. Suppose that there exist constants $c_1,c_2$ such that \begin{align*} \abs{q(\psi',\psi)} &\le c_1 \norm{N^{1/2}\psi} \norm{N^{1/2}\psi'} & \forall \psi,\psi' \in D(N^{1/2}) \\ \abs{q(N\psi',\psi)-q(\psi',N\psi)} &\le c_2 \norm{N^{1/2}\psi} \norm{N^{1/2}\psi'} & \forall \psi,\psi' \in D(N^{3/2}) \end{align*} Then the operator $q_{\mathrm{op}}$ associated to $q$ is defined on the domain of $N$ and is essentially selfadjoint on any core for $N$. \end{theorem} \cite{ReedSimon2} \cite{Nelson1972} \chapterbib %vim: syntax=mytex