\chapter{A Convolution Formula for Vector-Valued Tempered Distributions} \label{chapter:convolution} \blockcquote{Bisognano1975}{% The extension to vector-valued tempered distributions is trivial. } Recall that the class $\schwartz{\RR^n}$ of complex-valued Schwartz functions on $\RR^n$ is closed under convolution, a operation that assigns to functions $f$ and $g$ a third one, $f * g$, given by \begin{equation*} (f*g)(x) = \int f(x-y) g(y) \, dy \qquad x \in \RR^n. \end{equation*} \begin{definition}{Convolution of a Distribution with a Test Function}{} Let $u \in \tempdistrib{\RR^n}$ be tempered distribution and let $f \in \schwartz{\RR^n}$ be a Schwartz test function. Then the \emph{convolution} of $u$ with $f$ is the tempered distribution $u * f \in \tempdistrib{\RR^n}$ defined by \begin{equation*} (u * f)(g) \defequal u(\tilde{f} * g) \qquad g \in \schwartz{\RR^n}, \end{equation*} where $\tilde{f}(x) = f(-x)$ for all $x \in \RR^n$. \end{definition} It is well-known that the convolution can be expressed by the integral \begin{equation*} (u * f)(g) = \int u(\tau_x \tilde{f}@@) g(x) \, dx \end{equation*} emphasizing its character of a smoothing operation. The purpose of this appendix is to state and prove a vector-valued version of this formula. Let $X$ be a complex Banach space. Denote by $C^{\infty}(\RR^n,X)$ the vector space of all functions $f : \RR^n \to X$ such that the derivatives $\partial^{\alpha} f$ exist and are continuous for all multi-indices $\alpha \in \NN^n$. We define the space $\schwartz{\RR^n,X}$ of \emph{$X$-valued Schwartz functions} to be the vector space \begin{equation*} \schwartz{\RR^n,X} \defequal \braces{f \in C^{\infty}(\RR^n,X) \vcentcolon \norm{f}_{\alpha,\beta} < \infty \forall \alpha,\beta \in \NN^n} \end{equation*} equipped with the locally convex topology induced by the family of seminorms \begin{equation*} \norm{f}_{\alpha,\beta} = \sup_{x \in \RR^n} \abs{x^{\alpha}} \norm{\partial^{\beta} f(x)}_X. \end{equation*} We define the space $\tempdistrib{\RR^n,X}$ of \emph{$X$-valued tempered distributions} to be the vector space \begin{equation*} \tempdistrib{\RR^n,X} \defequal \BoundedLinearOperators[\big]{\schwartz{\RR^n},X}. \end{equation*} equipped with the bounded convergence topology. \begin{proposition}{Vector-Valued Convolution Formula}{} Let $v \in \tempdistrib{\RR^n,X}$ be tempered distribution with values in a Banach space $X$, and let $f \in \schwartz{\RR^n}$ be a Schwartz test function. Then one has \begin{equation*} (v * f)(g) = \int v(\tau_x \tilde{f}@@) g(x) \, dx \qquad g \in \schwartz{\RR^n}. \end{equation*} \end{proposition} Der Beweis ist in Arbeit ;) %\nomenclature[B]{$\BoundedLinearOperators{X,Y}$}{bounded linear operators from $X$ to $Y$\nomnorefpage} \chapterbib \cleardoublepage