\chapter{A Convolution Formula for Vector-Valued Tempered Distributions} \label{chapter:convolution} \blockcquote{Bisognano1975}{% The extension to vector-valued tempered distributions is trivial. } Recall that the class $\SchwartzFunctions{\RR^n}$ of complex-valued Schwartz functions on $\RR^n$ is closed under convolution, a operation that assigns to functions $f$ and $g$ a third one, $f * g$, given by \begin{equation*} (f*g)(x) = \int f(x-y) g(y) \, dy \qquad x \in \RR^n. \end{equation*} \begin{definition}{Convolution of a Distribution with a Test Function}{convolution-distribution-test-function} Let $u \in \TemperedDistributions{\RR^n}$ be a tempered distribution and let $f \in \SchwartzFunctions{\RR^n}$ be a Schwartz test function. Then the \emph{convolution} of $u$ with $f$ is the tempered distribution $u * f \in \TemperedDistributions{\RR^n}$ defined by \begin{equation*} (u * f)(g) \defequal u(\tilde{f} * g) \qquad g \in \SchwartzFunctions{\RR^n}, \end{equation*} where $\tilde{f}(x) = f(-x)$ for all $x \in \RR^n$. \end{definition} The motivation and justification for this definition is provided by the adjoint identity \begin{equation*} \int (h * f)(x) \, g(x) \, dx = \int h(x) \, (\tilde{f} * g)(x) \, dx \end{equation*} holding for all $f,g,h \in \SchwartzFunctions{\RR^n}$. It is well-known that the convolution can be expressed by the integral \begin{equation*} (u * f)(g) = \int u(\tau_x \tilde{f}@@) g(x) \, dx \end{equation*} emphasizing its character of a smoothing operation. The purpose of this appendix is to state and prove a vector-valued version of this formula. We proceed to develop a generalization of the Bochner integral for functions valued in a separable Fréchet space, as this will facilitate our proof of the convolution formula. We consider a $\sigma$-finite measure space $(X,\SigmaAlgebra{A},\mu)$, a separable Fréchet space $Y$ (over $\CC$) and the task is to define the integral of functions $f \vcentcolon X \to Y$. Recall that a measure space is said to be \emph{$\sigma$-finite} if it can be exhausted by a countable number of measurable subsets of finite measure. By \emph{Fréchet space} we mean a complete Hausdorff locally convex (topological vector) space which possesses countable neighborhood bases. We will make use of a countable family $P@@$ of seminorms that generates the topology of $@@Y$. A topological space is called \emph{separable} if it contains a countable dense subset. A function $f \vcentcolon X \to Y$ will be called \emph{simple} if it is of the form $\sum_{i=1}^n \chi_{A_i} y_i$ where $n \in \NN$, $A_i \in \SigmaAlgebra{A}$ with $\mu(A_i) < \infty$, and $y_i \in Y$. Naturally, the \emph{integral} of $f$ is defined to be the vector $\int f = \sum_{i=1}^n \mu(A_i) y_i \in Y$. We say that a function $f \vcentcolon X \to Y$ is \emph{strongly measurable} if it is the $\mu$-almost everywhere pointwise limit of simple functions. \begin{definition}{Generalized Bochner Integral}{} Suppose $(X,\SigmaAlgebra{A},\mu)$ is a $\sigma$-finite measure space, and $Y@@$ is a separable Fréchet space whose topology is generated by a family $P@@$ of seminorms. A strongly measurable function $f \vcentcolon X \to Y$ is called \emph{(generalized Bochner) integrable} if there exists a sequence $(f_n)$ of simple functions such that \begin{equation} \label{equation:bochner-integrable} \lim_{n \to \infty} \int_X p \circ (f_n - f) \, d\mu = 0 \qquad \forall p \in P. \end{equation} In this case, the \emph{(generalized Bochner) integral} of $f$ is defined by \begin{equation} \label{equation:bochner-integral} \int_X f \ d\mu \defequal \lim_{n \to \infty} \int_X f_n \, d\mu. \end{equation} \end{definition} This definition needs justification. First, for the integral in~\eqref{equation:bochner-integrable} to be meaningful, the functions $p \circ (f_n - f)$ must be $\mu$-measurable. Since $f$ is strongly measurable, there exists simple functions $s_k$ such that $f (x) = \lim_{k \to \infty} s_k(x)$ for almost all $x \in X$. The continuity of $p$ implies that $p \circ (f_n - f)$ is the almost everywhere limit simple scalar functions, namely $p \circ (f_n - s_k)$, and as such must be measurable. %We will defer this question for now. Second, we have to verify that the limit in~\eqref{equation:bochner-integral} exists and is independent of the particular sequence $(f_n)$. Remember that the sets $U_{F,\epsilon} = \braces{y \in Y \vcentcolon p(y) < \epsilon \forall p \in F}$, where $F \subset P$ is finite and $\epsilon > 0$, form a neighborhood basis for $0 \in Y$. Consider any such $U_{F,\epsilon}$. Then, for all $p \in F$ and $m,n \in \NN$ \begin{equation*} p \parens*{\smallint f_n - \smallint f_m} %= p \parens*{\smallint (f_n - f_m)} \le \smallint p \circ (f_n - f_m) \le \smallint p \circ (f - f_n) + \smallint p \circ (f - f_m). \end{equation*} By~\eqref{equation:bochner-integrable} there exists $N_p \in \NN$ such that $p \parens*{\int f_n - \int f_m} < \epsilon$ for all $m,n \ge N_p$. If we set $N = \max \braces{N_p \vcentcolon p \in F}$, then $\int f_n - \int f_m \in U_{F,\epsilon}$ for all $m,n \ge N$. This shows that $(\int f_n)$ is a Cauchy sequence in the topological vector space $Y$. Now the existence of a limit point follows from the completeness of $Y$. It is unique because the topology is Hausdorff. \begin{theorem}{Generalized Bochner Integrability Criterion}{generalized-bochner} Suppose $X$ is a $\sigma$-finite measure space, and $Y@@$ is a separable Fréchet space whose topology is generated by a countable family $P@@$ of seminorms. A function $f \vcentcolon X \to Y@@$ is generalized Bochner integrable if and only if it is strongly measurable and \begin{equation*} \int_X p \circ f \ d\mu < \infty \qquad \forall p \in P. \end{equation*} \end{theorem} \begin{proof} Since $X$ is $\sigma$-finite, $X = \bigcup_{m=1}^{\infty} X_m$ with $\mu(X_m) < \infty$ and $X_m \subset X_{m+1}$. Clearly, $f$ is the pointwise limit of the functions $f_m = f \chi_{X_m}$, as $m \to \infty$. Let $(p_i)_{i \in \NN}$ be an enumeration of the countable family $P$ of seminorms generating the locally convex topology on $Y$. Since $Y$ is separable, there is a dense sequence $(y_j)_{j \in \NN}$ of vectors in $Y$. For $n,j \in \NN$ let \begin{gather*} C_{nj} = y_j + U_{\braces{p_1, \ldots, p_n},1/n} = \braces[\big]{y \in Y \vcentcolon p_i(y - y_j) \le \tfrac{1}{n} \forall i=1,\ldots,n} \\ B_{nj} = f^{-1} C_{nj} \qquad A_{nj} = B_{nj} \setminus \bigcup_{k=1}^{j-1} B_{nk} \end{gather*} Observe that for each fixed $n$ the sets $C_{nj}$ cover $Y$, the sets $B_{nj}$ cover $X$ and the sets $A_{nj}$ partition $X$. Moreover, the sets $B_{nj}$, and consequently $A_{nj}$, are $\mu$-measurable because the functions $x \mapsto p_i \parens[\big]{f(x) - y_j}$ are $\mu$-measurable. Then, the functions \begin{equation*} f_{mn} = \sum_{j=1}^{\infty} \chi_{X_m \cap A_{nj}} y_j \end{equation*} satisfy $p_i(f(x) - f_{mn}(x)) \le \frac{1}{n}$ for all $x \in X$ when $i \le n$. Hence, $p_i \circ f_{mn} \le p_i \circ f + \frac{1}{n}$. Since $f_{mn}$ is supported in $X_m$, a set of finite measure, and $\int p_i \circ f < \infty$, we conclude $\int p_i \circ f_{mn} < \infty$ for all $i \le n$. For each $(m,n) \in \NN^2$ choose $J(m,n)$ so large that \begin{equation*} \int_{\bigcup_{j=J(m,n)+1}^{\infty} X_m \cap A_{nj}} p_i \circ f_{mn} < \frac{\mu(X_m)}{n} \qquad \forall i=1,\ldots,n. \end{equation*} The functions \begin{equation*} s_{mn} = \sum_{j=1}^{J(m,n)} \chi_{X_m \cap A_{nj}} y_j \end{equation*} are simple and satisfy \begin{equation*} \int p_i \circ (f_m - s_{mn}) \le \int p_i \circ (f_m - f_{mn}) + \int p_i \circ (f_{mn} - s_{mn}) < \frac{2\mu(X_m)}{n} \end{equation*} for $n \ge i$. It follows that \begin{equation*} \lim_{n \to \infty} \int p_i \circ (f_m - s_{mn}) = 0 \qquad \forall i \in \NN. \end{equation*} For each $m \in \NN$ choose $N(m)$ so large that \begin{equation*} \int p_i \circ (f_m - s_{mN(m)}) < \frac{1}{m} \qquad \forall i=1,\ldots,m. \end{equation*} and therefore \begin{equation*} \int p_i \circ (f - s_{m N(m)}) \le \frac{1}{m} + \int p_i \circ (f - f_m) \end{equation*} by the triangle inequality. %This implies %\begin{equation*} %\lim_{n \to \infty} \int p_i \circ (f_m - s_{mN(m)}) = 0 %\qquad \forall i \in \NN. %\end{equation*} For each $i \in \NN$ the increasing sequence $(p_i \circ f_{m})_m$ of positive real-valued measurable functions converges pointwise to the function $p_i \circ f$, which is by hypothesis is integrable. By Dominated Convergence, $\int p_i \circ (f-f_m) \to 0$, as $m \to \infty$. \begin{equation*} \lim_{m \to \infty} \int p_i \circ (f - s_{m N(m)}) = 0 \qquad \forall i \in \NN. \end{equation*} This proves that $f$ is generalized Bochner integrable. \end{proof} \begin{theorem}{}{integral-commutes-with-operator} Suppose $X$ is a $\sigma$-finite measure space. Let $Y$ and $Z$ be separable Fréchet spaces, and let $T \vcentcolon Y \to Z$ be a continuous linear operator. If $f \vcentcolon X \to Y$ is generalized Bochner integrable, then $T \circ f \vcentcolon X \to Z$ is generalized Bochner integrable, and \begin{equation*} \int T \circ f = T \! \int \! f. \end{equation*} \end{theorem} \begin{proof} Clearly, the composition $T \circ f$ is strongly measurable because $T$ is continuous and $f$ is strongly measurable. Suppose that the locally convex topologies on $Y$ and $Z$ are generated by the seminorm families $P$ and $Q$, respectively. If $q \in Q$, then the fact that $T$ is continuous and linear implies that there exists a finite subset $F \subset P$ and a constant $M \ge 0$ such that $q \circ T \le M \max_{p \in F} p$. If $(f_n)$ is a sequence of simple functions such that $\int p \circ (f - f_n) \to 0$, then $\int q \circ T \circ (f-f_n) \to 0$. This shows that $T \circ f$ is generalized Bochner integrable, and \begin{equation*} \int T \circ f = \lim_{n \to \infty} \int T \circ f_n = T \lim_{n \to \infty} \int f_n = T \int f.\qedhere \end{equation*} %By \cref{theorem:generalized-bochner}, %it follows that $\int q \circ T \circ f < \infty$, \end{proof} We now return to tempered distributions. Denote by $\TestFunctions{\RR^n}$ the vector space of all functions $f \vcentcolon \RR^n \to \CC$ such that the derivatives $\partial^{\alpha} f$ exist and are continuous for all multi-indices $\alpha \in \NN^n$. Recall that the space $\SchwartzFunctions{\RR^n}$ of \emph{Schwartz functions} is defined to be the vector space \begin{equation*} \SchwartzFunctions{\RR^n,X} \defequal \braces{f \in \TestFunctions{\RR^n} \vcentcolon \norm{f}_{\alpha,\beta} < \infty \ \forall \alpha,\beta \in \NN^n} \end{equation*} equipped with the locally convex topology induced by the family of seminorms \begin{equation*} \norm{f}_{\alpha,\beta} = \sup_{x \in \RR^n} \abs{x^{\alpha}} \abs{\partial^{\beta} f(x)}. \end{equation*} It is well known that the Schwartz space is a separable Fréchet space. Now let $X$ be any separable Fréchet space. We define the space $\TemperedDistributions{\RR^n\!,X}$ of \emph{$X$-valued tempered distributions} to be the vector space \begin{equation*} \TemperedDistributions{\RR^n\!,X} \defequal \ContinousLinearOperators[\big]{\SchwartzFunctions{\RR^n},X}. \end{equation*} of all continuous linear operators $\SchwartzFunctions{\RR^n} \to X$ equipped with the bounded convergence topology. The convolution of a $X$-valued tempered distribution $v$ with a Schwartz function $f$ is defined in the same way as in \cref{definition:convolution-distribution-test-function}, that is by \begin{equation*} (v * f)(g) \defequal v(\tilde{f} * g) \qquad g \in \SchwartzFunctions{\RR^n}. \end{equation*} \begin{proposition}{Vector-Valued Convolution Formula}{vector-valued-convolution-formula} Let $v \in \TemperedDistributions{\RR^n\!,X}$ be a tempered distribution with values in a separable Fréchet space $X$, and let $f \in \SchwartzFunctions{\RR^n}$ be a Schwartz test function. Then one has \begin{equation*} (v * f)(g) = \int v(\tau_x \tilde{f}@@) g(x) \, dx \qquad g \in \SchwartzFunctions{\RR^n}. \end{equation*} \end{proposition} \begin{proof} We fix a Schwartz function $g$, and consider the finite measure $\mu = \abs{g} \lambda$ on $\RR^n$, where $\lambda(x) = dx$ is the Lebesgue measure. We show that the mapping $x \mapsto \tau_x \tilde{f}$ is a generalized Bochner $\mu$-integrable function $\RR^n \to \SchwartzFunctions{\RR^n}$ using \cref{theorem:generalized-bochner}. For all $\alpha,\beta \in \NN^n$ we see by substituting $x+y$ for $y$ that \begin{equation*} \norm{\tau_x \tilde{f}}_{\alpha,\beta} = \sup_{y} \abs{y^{\alpha} \partial^{\beta} (\tau_x \tilde{f})(y)} = \sup_{y} \abs{(x+y)^{\alpha} \partial^{\beta} \tilde{f}(y)}. \end{equation*} There exists constants $c_{\gamma \delta}$ with $\abs{(x+y)^{\alpha}} \le \sum_{\gamma + \delta = \alpha} c_{\gamma \delta} \abs{x^{\gamma} y^{\delta}}$, and it follows that \begin{equation*} \int \norm{\tau_x \tilde{f}}_{\alpha,\beta} \, d \mu(x) \le \sum_{\gamma + \delta = \alpha} c_{\gamma \delta} \norm{\tilde{f}}_{\delta,\beta} \int \abs{x^{\gamma}} g(x) \, dx < \infty \end{equation*} because $g$ is Schwartz class. Hence, $x \mapsto \tau_x \tilde{f}$ defines an integrable function. The mapping $v \vcentcolon \SchwartzFunctions{\RR^n} \to X$ is linear and continuous by definition. By \cref{theorem:integral-commutes-with-operator}, the composite mapping $x \mapsto v(\tau_x \tilde{f})$ is a $\mu$-integrable function $\RR^n \to X$, and \begin{equation} \label{equation:general-bochner-appears} \int v(\tau_x \tilde{f}) \, d\mu(x) = v \parens[\bigg]{\int \tau_x \tilde{f} \, d\mu(x)} \end{equation} For every fixed $y \in \RR^4$ the evaluation mapping $\ev_{\! @@y} \vcentcolon \SchwartzFunctions{\RR^4} \to \CC$, $h \mapsto h(y)$, clearly is continuous. A second invocation of \cref{theorem:integral-commutes-with-operator} delivers \begin{equation*} \ev_{\! @@y} \parens[\bigg]{\int \tau_x \tilde{f} \, d\mu(x)} = \int \ev_{\! @@y}(\tau_x \tilde{f}) \, d\mu(x) = \int \tilde{f}(y-x) g(x) \, dx = (\tilde{f} * g)(y) \end{equation*} and the proof is complete. \end{proof} Let us point out that even in the special case that $X$ is a Banach space the integral on the right hand side of~\eqref{equation:general-bochner-appears} only has meaning as a generalized Bochner integral, since the integrand takes values in $\SchwartzFunctions{\RR^n}$, which is not a Banach space. We could not have performed this step with the ordinary Bochner integral. %\nomenclature[B]{$\BoundedLinearOperators{X,Y}$}{bounded linear operators from $X$ to $Y$\nomnorefpage}