From f3bf8d3110b852b8f338898c3237d16a74360cf3 Mon Sep 17 00:00:00 2001 From: Jay Berkenbilt Date: Sat, 10 Oct 2009 17:41:30 +0000 Subject: remove files not needed for building git-svn-id: svn+q:///qpdf/trunk@767 71b93d88-0707-0410-a8cf-f5a4172ac649 --- external-libs/pcre/doc/pcre.txt | 3169 --------------------------------------- 1 file changed, 3169 deletions(-) delete mode 100644 external-libs/pcre/doc/pcre.txt (limited to 'external-libs/pcre/doc/pcre.txt') diff --git a/external-libs/pcre/doc/pcre.txt b/external-libs/pcre/doc/pcre.txt deleted file mode 100644 index 698baa52..00000000 --- a/external-libs/pcre/doc/pcre.txt +++ /dev/null @@ -1,3169 +0,0 @@ -This file contains a concatenation of the PCRE man pages, converted to plain -text format for ease of searching with a text editor, or for use on systems -that do not have a man page processor. The small individual files that give -synopses of each function in the library have not been included. There are -separate text files for the pcregrep and pcretest commands. ------------------------------------------------------------------------------ - -PCRE(3) PCRE(3) - - - -NAME - PCRE - Perl-compatible regular expressions - -DESCRIPTION - - The PCRE library is a set of functions that implement regular expres- - sion pattern matching using the same syntax and semantics as Perl, with - just a few differences. The current implementation of PCRE (release - 4.x) corresponds approximately with Perl 5.8, including support for - UTF-8 encoded strings. However, this support has to be explicitly - enabled; it is not the default. - - PCRE is written in C and released as a C library. However, a number of - people have written wrappers and interfaces of various kinds. A C++ - class is included in these contributions, which can be found in the - Contrib directory at the primary FTP site, which is: - - ftp://ftp.csx.cam.ac.uk/pub/software/programming/pcre - - Details of exactly which Perl regular expression features are and are - not supported by PCRE are given in separate documents. See the pcrepat- - tern and pcrecompat pages. - - Some features of PCRE can be included, excluded, or changed when the - library is built. The pcre_config() function makes it possible for a - client to discover which features are available. Documentation about - building PCRE for various operating systems can be found in the README - file in the source distribution. - - -USER DOCUMENTATION - - The user documentation for PCRE has been split up into a number of dif- - ferent sections. In the "man" format, each of these is a separate "man - page". In the HTML format, each is a separate page, linked from the - index page. In the plain text format, all the sections are concate- - nated, for ease of searching. The sections are as follows: - - pcre this document - pcreapi details of PCRE's native API - pcrebuild options for building PCRE - pcrecallout details of the callout feature - pcrecompat discussion of Perl compatibility - pcregrep description of the pcregrep command - pcrepattern syntax and semantics of supported - regular expressions - pcreperform discussion of performance issues - pcreposix the POSIX-compatible API - pcresample discussion of the sample program - pcretest the pcretest testing command - - In addition, in the "man" and HTML formats, there is a short page for - each library function, listing its arguments and results. - - -LIMITATIONS - - There are some size limitations in PCRE but it is hoped that they will - never in practice be relevant. - - The maximum length of a compiled pattern is 65539 (sic) bytes if PCRE - is compiled with the default internal linkage size of 2. If you want to - process regular expressions that are truly enormous, you can compile - PCRE with an internal linkage size of 3 or 4 (see the README file in - the source distribution and the pcrebuild documentation for details). - If these cases the limit is substantially larger. However, the speed - of execution will be slower. - - All values in repeating quantifiers must be less than 65536. The maxi- - mum number of capturing subpatterns is 65535. - - There is no limit to the number of non-capturing subpatterns, but the - maximum depth of nesting of all kinds of parenthesized subpattern, - including capturing subpatterns, assertions, and other types of subpat- - tern, is 200. - - The maximum length of a subject string is the largest positive number - that an integer variable can hold. However, PCRE uses recursion to han- - dle subpatterns and indefinite repetition. This means that the avail- - able stack space may limit the size of a subject string that can be - processed by certain patterns. - - -UTF-8 SUPPORT - - Starting at release 3.3, PCRE has had some support for character - strings encoded in the UTF-8 format. For release 4.0 this has been - greatly extended to cover most common requirements. - - In order process UTF-8 strings, you must build PCRE to include UTF-8 - support in the code, and, in addition, you must call pcre_compile() - with the PCRE_UTF8 option flag. When you do this, both the pattern and - any subject strings that are matched against it are treated as UTF-8 - strings instead of just strings of bytes. - - If you compile PCRE with UTF-8 support, but do not use it at run time, - the library will be a bit bigger, but the additional run time overhead - is limited to testing the PCRE_UTF8 flag in several places, so should - not be very large. - - The following comments apply when PCRE is running in UTF-8 mode: - - 1. When you set the PCRE_UTF8 flag, the strings passed as patterns and - subjects are checked for validity on entry to the relevant functions. - If an invalid UTF-8 string is passed, an error return is given. In some - situations, you may already know that your strings are valid, and - therefore want to skip these checks in order to improve performance. If - you set the PCRE_NO_UTF8_CHECK flag at compile time or at run time, - PCRE assumes that the pattern or subject it is given (respectively) - contains only valid UTF-8 codes. In this case, it does not diagnose an - invalid UTF-8 string. If you pass an invalid UTF-8 string to PCRE when - PCRE_NO_UTF8_CHECK is set, the results are undefined. Your program may - crash. - - 2. In a pattern, the escape sequence \x{...}, where the contents of the - braces is a string of hexadecimal digits, is interpreted as a UTF-8 - character whose code number is the given hexadecimal number, for exam- - ple: \x{1234}. If a non-hexadecimal digit appears between the braces, - the item is not recognized. This escape sequence can be used either as - a literal, or within a character class. - - 3. The original hexadecimal escape sequence, \xhh, matches a two-byte - UTF-8 character if the value is greater than 127. - - 4. Repeat quantifiers apply to complete UTF-8 characters, not to indi- - vidual bytes, for example: \x{100}{3}. - - 5. The dot metacharacter matches one UTF-8 character instead of a - single byte. - - 6. The escape sequence \C can be used to match a single byte in UTF-8 - mode, but its use can lead to some strange effects. - - 7. The character escapes \b, \B, \d, \D, \s, \S, \w, and \W correctly - test characters of any code value, but the characters that PCRE recog- - nizes as digits, spaces, or word characters remain the same set as - before, all with values less than 256. - - 8. Case-insensitive matching applies only to characters whose values - are less than 256. PCRE does not support the notion of "case" for - higher-valued characters. - - 9. PCRE does not support the use of Unicode tables and properties or - the Perl escapes \p, \P, and \X. - - -AUTHOR - - Philip Hazel - University Computing Service, - Cambridge CB2 3QG, England. - Phone: +44 1223 334714 - -Last updated: 20 August 2003 -Copyright (c) 1997-2003 University of Cambridge. ------------------------------------------------------------------------------ - -PCRE(3) PCRE(3) - - - -NAME - PCRE - Perl-compatible regular expressions - -PCRE BUILD-TIME OPTIONS - - This document describes the optional features of PCRE that can be - selected when the library is compiled. They are all selected, or dese- - lected, by providing options to the configure script which is run - before the make command. The complete list of options for configure - (which includes the standard ones such as the selection of the instal- - lation directory) can be obtained by running - - ./configure --help - - The following sections describe certain options whose names begin with - --enable or --disable. These settings specify changes to the defaults - for the configure command. Because of the way that configure works, - --enable and --disable always come in pairs, so the complementary - option always exists as well, but as it specifies the default, it is - not described. - - -UTF-8 SUPPORT - - To build PCRE with support for UTF-8 character strings, add - - --enable-utf8 - - to the configure command. Of itself, this does not make PCRE treat - strings as UTF-8. As well as compiling PCRE with this option, you also - have have to set the PCRE_UTF8 option when you call the pcre_compile() - function. - - -CODE VALUE OF NEWLINE - - By default, PCRE treats character 10 (linefeed) as the newline charac- - ter. This is the normal newline character on Unix-like systems. You can - compile PCRE to use character 13 (carriage return) instead by adding - - --enable-newline-is-cr - - to the configure command. For completeness there is also a --enable- - newline-is-lf option, which explicitly specifies linefeed as the new- - line character. - - -BUILDING SHARED AND STATIC LIBRARIES - - The PCRE building process uses libtool to build both shared and static - Unix libraries by default. You can suppress one of these by adding one - of - - --disable-shared - --disable-static - - to the configure command, as required. - - -POSIX MALLOC USAGE - - When PCRE is called through the POSIX interface (see the pcreposix - documentation), additional working storage is required for holding the - pointers to capturing substrings because PCRE requires three integers - per substring, whereas the POSIX interface provides only two. If the - number of expected substrings is small, the wrapper function uses space - on the stack, because this is faster than using malloc() for each call. - The default threshold above which the stack is no longer used is 10; it - can be changed by adding a setting such as - - --with-posix-malloc-threshold=20 - - to the configure command. - - -LIMITING PCRE RESOURCE USAGE - - Internally, PCRE has a function called match() which it calls repeat- - edly (possibly recursively) when performing a matching operation. By - limiting the number of times this function may be called, a limit can - be placed on the resources used by a single call to pcre_exec(). The - limit can be changed at run time, as described in the pcreapi documen- - tation. The default is 10 million, but this can be changed by adding a - setting such as - - --with-match-limit=500000 - - to the configure command. - - -HANDLING VERY LARGE PATTERNS - - Within a compiled pattern, offset values are used to point from one - part to another (for example, from an opening parenthesis to an alter- - nation metacharacter). By default two-byte values are used for these - offsets, leading to a maximum size for a compiled pattern of around - 64K. This is sufficient to handle all but the most gigantic patterns. - Nevertheless, some people do want to process enormous patterns, so it - is possible to compile PCRE to use three-byte or four-byte offsets by - adding a setting such as - - --with-link-size=3 - - to the configure command. The value given must be 2, 3, or 4. Using - longer offsets slows down the operation of PCRE because it has to load - additional bytes when handling them. - - If you build PCRE with an increased link size, test 2 (and test 5 if - you are using UTF-8) will fail. Part of the output of these tests is a - representation of the compiled pattern, and this changes with the link - size. - - -AVOIDING EXCESSIVE STACK USAGE - - PCRE implements backtracking while matching by making recursive calls - to an internal function called match(). In environments where the size - of the stack is limited, this can severely limit PCRE's operation. (The - Unix environment does not usually suffer from this problem.) An alter- - native approach that uses memory from the heap to remember data, - instead of using recursive function calls, has been implemented to work - round this problem. If you want to build a version of PCRE that works - this way, add - - --disable-stack-for-recursion - - to the configure command. With this configuration, PCRE will use the - pcre_stack_malloc and pcre_stack_free variables to call memory - management functions. Separate functions are provided because the usage - is very predictable: the block sizes requested are always the same, and - the blocks are always freed in reverse order. A calling program might - be able to implement optimized functions that perform better than the - standard malloc() and free() functions. PCRE runs noticeably more - slowly when built in this way. - - -USING EBCDIC CODE - - PCRE assumes by default that it will run in an environment where the - character code is ASCII (or UTF-8, which is a superset of ASCII). PCRE - can, however, be compiled to run in an EBCDIC environment by adding - - --enable-ebcdic - - to the configure command. - -Last updated: 09 December 2003 -Copyright (c) 1997-2003 University of Cambridge. ------------------------------------------------------------------------------ - -PCRE(3) PCRE(3) - - - -NAME - PCRE - Perl-compatible regular expressions - -SYNOPSIS OF PCRE API - - #include - - pcre *pcre_compile(const char *pattern, int options, - const char **errptr, int *erroffset, - const unsigned char *tableptr); - - pcre_extra *pcre_study(const pcre *code, int options, - const char **errptr); - - int pcre_exec(const pcre *code, const pcre_extra *extra, - const char *subject, int length, int startoffset, - int options, int *ovector, int ovecsize); - - int pcre_copy_named_substring(const pcre *code, - const char *subject, int *ovector, - int stringcount, const char *stringname, - char *buffer, int buffersize); - - int pcre_copy_substring(const char *subject, int *ovector, - int stringcount, int stringnumber, char *buffer, - int buffersize); - - int pcre_get_named_substring(const pcre *code, - const char *subject, int *ovector, - int stringcount, const char *stringname, - const char **stringptr); - - int pcre_get_stringnumber(const pcre *code, - const char *name); - - int pcre_get_substring(const char *subject, int *ovector, - int stringcount, int stringnumber, - const char **stringptr); - - int pcre_get_substring_list(const char *subject, - int *ovector, int stringcount, const char ***listptr); - - void pcre_free_substring(const char *stringptr); - - void pcre_free_substring_list(const char **stringptr); - - const unsigned char *pcre_maketables(void); - - int pcre_fullinfo(const pcre *code, const pcre_extra *extra, - int what, void *where); - - int pcre_info(const pcre *code, int *optptr, int *firstcharptr); - - int pcre_config(int what, void *where); - - char *pcre_version(void); - - void *(*pcre_malloc)(size_t); - - void (*pcre_free)(void *); - - void *(*pcre_stack_malloc)(size_t); - - void (*pcre_stack_free)(void *); - - int (*pcre_callout)(pcre_callout_block *); - - -PCRE API - - PCRE has its own native API, which is described in this document. There - is also a set of wrapper functions that correspond to the POSIX regular - expression API. These are described in the pcreposix documentation. - - The native API function prototypes are defined in the header file - pcre.h, and on Unix systems the library itself is called libpcre.a, so - can be accessed by adding -lpcre to the command for linking an applica- - tion which calls it. The header file defines the macros PCRE_MAJOR and - PCRE_MINOR to contain the major and minor release numbers for the - library. Applications can use these to include support for different - releases. - - The functions pcre_compile(), pcre_study(), and pcre_exec() are used - for compiling and matching regular expressions. A sample program that - demonstrates the simplest way of using them is given in the file pcre- - demo.c. The pcresample documentation describes how to run it. - - There are convenience functions for extracting captured substrings from - a matched subject string. They are: - - pcre_copy_substring() - pcre_copy_named_substring() - pcre_get_substring() - pcre_get_named_substring() - pcre_get_substring_list() - - pcre_free_substring() and pcre_free_substring_list() are also provided, - to free the memory used for extracted strings. - - The function pcre_maketables() is used (optionally) to build a set of - character tables in the current locale for passing to pcre_compile(). - - The function pcre_fullinfo() is used to find out information about a - compiled pattern; pcre_info() is an obsolete version which returns only - some of the available information, but is retained for backwards com- - patibility. The function pcre_version() returns a pointer to a string - containing the version of PCRE and its date of release. - - The global variables pcre_malloc and pcre_free initially contain the - entry points of the standard malloc() and free() functions respec- - tively. PCRE calls the memory management functions via these variables, - so a calling program can replace them if it wishes to intercept the - calls. This should be done before calling any PCRE functions. - - The global variables pcre_stack_malloc and pcre_stack_free are also - indirections to memory management functions. These special functions - are used only when PCRE is compiled to use the heap for remembering - data, instead of recursive function calls. This is a non-standard way - of building PCRE, for use in environments that have limited stacks. - Because of the greater use of memory management, it runs more slowly. - Separate functions are provided so that special-purpose external code - can be used for this case. When used, these functions are always called - in a stack-like manner (last obtained, first freed), and always for - memory blocks of the same size. - - The global variable pcre_callout initially contains NULL. It can be set - by the caller to a "callout" function, which PCRE will then call at - specified points during a matching operation. Details are given in the - pcrecallout documentation. - - -MULTITHREADING - - The PCRE functions can be used in multi-threading applications, with - the proviso that the memory management functions pointed to by - pcre_malloc, pcre_free, pcre_stack_malloc, and pcre_stack_free, and the - callout function pointed to by pcre_callout, are shared by all threads. - - The compiled form of a regular expression is not altered during match- - ing, so the same compiled pattern can safely be used by several threads - at once. - - -CHECKING BUILD-TIME OPTIONS - - int pcre_config(int what, void *where); - - The function pcre_config() makes it possible for a PCRE client to dis- - cover which optional features have been compiled into the PCRE library. - The pcrebuild documentation has more details about these optional fea- - tures. - - The first argument for pcre_config() is an integer, specifying which - information is required; the second argument is a pointer to a variable - into which the information is placed. The following information is - available: - - PCRE_CONFIG_UTF8 - - The output is an integer that is set to one if UTF-8 support is avail- - able; otherwise it is set to zero. - - PCRE_CONFIG_NEWLINE - - The output is an integer that is set to the value of the code that is - used for the newline character. It is either linefeed (10) or carriage - return (13), and should normally be the standard character for your - operating system. - - PCRE_CONFIG_LINK_SIZE - - The output is an integer that contains the number of bytes used for - internal linkage in compiled regular expressions. The value is 2, 3, or - 4. Larger values allow larger regular expressions to be compiled, at - the expense of slower matching. The default value of 2 is sufficient - for all but the most massive patterns, since it allows the compiled - pattern to be up to 64K in size. - - PCRE_CONFIG_POSIX_MALLOC_THRESHOLD - - The output is an integer that contains the threshold above which the - POSIX interface uses malloc() for output vectors. Further details are - given in the pcreposix documentation. - - PCRE_CONFIG_MATCH_LIMIT - - The output is an integer that gives the default limit for the number of - internal matching function calls in a pcre_exec() execution. Further - details are given with pcre_exec() below. - - PCRE_CONFIG_STACKRECURSE - - The output is an integer that is set to one if internal recursion is - implemented by recursive function calls that use the stack to remember - their state. This is the usual way that PCRE is compiled. The output is - zero if PCRE was compiled to use blocks of data on the heap instead of - recursive function calls. In this case, pcre_stack_malloc and - pcre_stack_free are called to manage memory blocks on the heap, thus - avoiding the use of the stack. - - -COMPILING A PATTERN - - pcre *pcre_compile(const char *pattern, int options, - const char **errptr, int *erroffset, - const unsigned char *tableptr); - - - The function pcre_compile() is called to compile a pattern into an - internal form. The pattern is a C string terminated by a binary zero, - and is passed in the argument pattern. A pointer to a single block of - memory that is obtained via pcre_malloc is returned. This contains the - compiled code and related data. The pcre type is defined for the - returned block; this is a typedef for a structure whose contents are - not externally defined. It is up to the caller to free the memory when - it is no longer required. - - Although the compiled code of a PCRE regex is relocatable, that is, it - does not depend on memory location, the complete pcre data block is not - fully relocatable, because it contains a copy of the tableptr argument, - which is an address (see below). - - The options argument contains independent bits that affect the compila- - tion. It should be zero if no options are required. Some of the - options, in particular, those that are compatible with Perl, can also - be set and unset from within the pattern (see the detailed description - of regular expressions in the pcrepattern documentation). For these - options, the contents of the options argument specifies their initial - settings at the start of compilation and execution. The PCRE_ANCHORED - option can be set at the time of matching as well as at compile time. - - If errptr is NULL, pcre_compile() returns NULL immediately. Otherwise, - if compilation of a pattern fails, pcre_compile() returns NULL, and - sets the variable pointed to by errptr to point to a textual error mes- - sage. The offset from the start of the pattern to the character where - the error was discovered is placed in the variable pointed to by - erroffset, which must not be NULL. If it is, an immediate error is - given. - - If the final argument, tableptr, is NULL, PCRE uses a default set of - character tables which are built when it is compiled, using the default - C locale. Otherwise, tableptr must be the result of a call to - pcre_maketables(). See the section on locale support below. - - This code fragment shows a typical straightforward call to pcre_com- - pile(): - - pcre *re; - const char *error; - int erroffset; - re = pcre_compile( - "^A.*Z", /* the pattern */ - 0, /* default options */ - &error, /* for error message */ - &erroffset, /* for error offset */ - NULL); /* use default character tables */ - - The following option bits are defined: - - PCRE_ANCHORED - - If this bit is set, the pattern is forced to be "anchored", that is, it - is constrained to match only at the first matching point in the string - which is being searched (the "subject string"). This effect can also be - achieved by appropriate constructs in the pattern itself, which is the - only way to do it in Perl. - - PCRE_CASELESS - - If this bit is set, letters in the pattern match both upper and lower - case letters. It is equivalent to Perl's /i option, and it can be - changed within a pattern by a (?i) option setting. - - PCRE_DOLLAR_ENDONLY - - If this bit is set, a dollar metacharacter in the pattern matches only - at the end of the subject string. Without this option, a dollar also - matches immediately before the final character if it is a newline (but - not before any other newlines). The PCRE_DOLLAR_ENDONLY option is - ignored if PCRE_MULTILINE is set. There is no equivalent to this option - in Perl, and no way to set it within a pattern. - - PCRE_DOTALL - - If this bit is set, a dot metacharater in the pattern matches all char- - acters, including newlines. Without it, newlines are excluded. This - option is equivalent to Perl's /s option, and it can be changed within - a pattern by a (?s) option setting. A negative class such as [^a] - always matches a newline character, independent of the setting of this - option. - - PCRE_EXTENDED - - If this bit is set, whitespace data characters in the pattern are - totally ignored except when escaped or inside a character class. - Whitespace does not include the VT character (code 11). In addition, - characters between an unescaped # outside a character class and the - next newline character, inclusive, are also ignored. This is equivalent - to Perl's /x option, and it can be changed within a pattern by a (?x) - option setting. - - This option makes it possible to include comments inside complicated - patterns. Note, however, that this applies only to data characters. - Whitespace characters may never appear within special character - sequences in a pattern, for example within the sequence (?( which - introduces a conditional subpattern. - - PCRE_EXTRA - - This option was invented in order to turn on additional functionality - of PCRE that is incompatible with Perl, but it is currently of very - little use. When set, any backslash in a pattern that is followed by a - letter that has no special meaning causes an error, thus reserving - these combinations for future expansion. By default, as in Perl, a - backslash followed by a letter with no special meaning is treated as a - literal. There are at present no other features controlled by this - option. It can also be set by a (?X) option setting within a pattern. - - PCRE_MULTILINE - - By default, PCRE treats the subject string as consisting of a single - "line" of characters (even if it actually contains several newlines). - The "start of line" metacharacter (^) matches only at the start of the - string, while the "end of line" metacharacter ($) matches only at the - end of the string, or before a terminating newline (unless PCRE_DOL- - LAR_ENDONLY is set). This is the same as Perl. - - When PCRE_MULTILINE it is set, the "start of line" and "end of line" - constructs match immediately following or immediately before any new- - line in the subject string, respectively, as well as at the very start - and end. This is equivalent to Perl's /m option, and it can be changed - within a pattern by a (?m) option setting. If there are no "\n" charac- - ters in a subject string, or no occurrences of ^ or $ in a pattern, - setting PCRE_MULTILINE has no effect. - - PCRE_NO_AUTO_CAPTURE - - If this option is set, it disables the use of numbered capturing paren- - theses in the pattern. Any opening parenthesis that is not followed by - ? behaves as if it were followed by ?: but named parentheses can still - be used for capturing (and they acquire numbers in the usual way). - There is no equivalent of this option in Perl. - - PCRE_UNGREEDY - - This option inverts the "greediness" of the quantifiers so that they - are not greedy by default, but become greedy if followed by "?". It is - not compatible with Perl. It can also be set by a (?U) option setting - within the pattern. - - PCRE_UTF8 - - This option causes PCRE to regard both the pattern and the subject as - strings of UTF-8 characters instead of single-byte character strings. - However, it is available only if PCRE has been built to include UTF-8 - support. If not, the use of this option provokes an error. Details of - how this option changes the behaviour of PCRE are given in the section - on UTF-8 support in the main pcre page. - - PCRE_NO_UTF8_CHECK - - When PCRE_UTF8 is set, the validity of the pattern as a UTF-8 string is - automatically checked. If an invalid UTF-8 sequence of bytes is found, - pcre_compile() returns an error. If you already know that your pattern - is valid, and you want to skip this check for performance reasons, you - can set the PCRE_NO_UTF8_CHECK option. When it is set, the effect of - passing an invalid UTF-8 string as a pattern is undefined. It may cause - your program to crash. Note that there is a similar option for sup- - pressing the checking of subject strings passed to pcre_exec(). - - - -STUDYING A PATTERN - - pcre_extra *pcre_study(const pcre *code, int options, - const char **errptr); - - When a pattern is going to be used several times, it is worth spending - more time analyzing it in order to speed up the time taken for match- - ing. The function pcre_study() takes a pointer to a compiled pattern as - its first argument. If studing the pattern produces additional informa- - tion that will help speed up matching, pcre_study() returns a pointer - to a pcre_extra block, in which the study_data field points to the - results of the study. - - The returned value from a pcre_study() can be passed directly to - pcre_exec(). However, the pcre_extra block also contains other fields - that can be set by the caller before the block is passed; these are - described below. If studying the pattern does not produce any addi- - tional information, pcre_study() returns NULL. In that circumstance, if - the calling program wants to pass some of the other fields to - pcre_exec(), it must set up its own pcre_extra block. - - The second argument contains option bits. At present, no options are - defined for pcre_study(), and this argument should always be zero. - - The third argument for pcre_study() is a pointer for an error message. - If studying succeeds (even if no data is returned), the variable it - points to is set to NULL. Otherwise it points to a textual error mes- - sage. You should therefore test the error pointer for NULL after call- - ing pcre_study(), to be sure that it has run successfully. - - This is a typical call to pcre_study(): - - pcre_extra *pe; - pe = pcre_study( - re, /* result of pcre_compile() */ - 0, /* no options exist */ - &error); /* set to NULL or points to a message */ - - At present, studying a pattern is useful only for non-anchored patterns - that do not have a single fixed starting character. A bitmap of possi- - ble starting characters is created. - - -LOCALE SUPPORT - - PCRE handles caseless matching, and determines whether characters are - letters, digits, or whatever, by reference to a set of tables. When - running in UTF-8 mode, this applies only to characters with codes less - than 256. The library contains a default set of tables that is created - in the default C locale when PCRE is compiled. This is used when the - final argument of pcre_compile() is NULL, and is sufficient for many - applications. - - An alternative set of tables can, however, be supplied. Such tables are - built by calling the pcre_maketables() function, which has no argu- - ments, in the relevant locale. The result can then be passed to - pcre_compile() as often as necessary. For example, to build and use - tables that are appropriate for the French locale (where accented char- - acters with codes greater than 128 are treated as letters), the follow- - ing code could be used: - - setlocale(LC_CTYPE, "fr"); - tables = pcre_maketables(); - re = pcre_compile(..., tables); - - The tables are built in memory that is obtained via pcre_malloc. The - pointer that is passed to pcre_compile is saved with the compiled pat- - tern, and the same tables are used via this pointer by pcre_study() and - pcre_exec(). Thus, for any single pattern, compilation, studying and - matching all happen in the same locale, but different patterns can be - compiled in different locales. It is the caller's responsibility to - ensure that the memory containing the tables remains available for as - long as it is needed. - - -INFORMATION ABOUT A PATTERN - - int pcre_fullinfo(const pcre *code, const pcre_extra *extra, - int what, void *where); - - The pcre_fullinfo() function returns information about a compiled pat- - tern. It replaces the obsolete pcre_info() function, which is neverthe- - less retained for backwards compability (and is documented below). - - The first argument for pcre_fullinfo() is a pointer to the compiled - pattern. The second argument is the result of pcre_study(), or NULL if - the pattern was not studied. The third argument specifies which piece - of information is required, and the fourth argument is a pointer to a - variable to receive the data. The yield of the function is zero for - success, or one of the following negative numbers: - - PCRE_ERROR_NULL the argument code was NULL - the argument where was NULL - PCRE_ERROR_BADMAGIC the "magic number" was not found - PCRE_ERROR_BADOPTION the value of what was invalid - - Here is a typical call of pcre_fullinfo(), to obtain the length of the - compiled pattern: - - int rc; - unsigned long int length; - rc = pcre_fullinfo( - re, /* result of pcre_compile() */ - pe, /* result of pcre_study(), or NULL */ - PCRE_INFO_SIZE, /* what is required */ - &length); /* where to put the data */ - - The possible values for the third argument are defined in pcre.h, and - are as follows: - - PCRE_INFO_BACKREFMAX - - Return the number of the highest back reference in the pattern. The - fourth argument should point to an int variable. Zero is returned if - there are no back references. - - PCRE_INFO_CAPTURECOUNT - - Return the number of capturing subpatterns in the pattern. The fourth - argument should point to an int variable. - - PCRE_INFO_FIRSTBYTE - - Return information about the first byte of any matched string, for a - non-anchored pattern. (This option used to be called - PCRE_INFO_FIRSTCHAR; the old name is still recognized for backwards - compatibility.) - - If there is a fixed first byte, e.g. from a pattern such as - (cat|cow|coyote), it is returned in the integer pointed to by where. - Otherwise, if either - - (a) the pattern was compiled with the PCRE_MULTILINE option, and every - branch starts with "^", or - - (b) every branch of the pattern starts with ".*" and PCRE_DOTALL is not - set (if it were set, the pattern would be anchored), - - -1 is returned, indicating that the pattern matches only at the start - of a subject string or after any newline within the string. Otherwise - -2 is returned. For anchored patterns, -2 is returned. - - PCRE_INFO_FIRSTTABLE - - If the pattern was studied, and this resulted in the construction of a - 256-bit table indicating a fixed set of bytes for the first byte in any - matching string, a pointer to the table is returned. Otherwise NULL is - returned. The fourth argument should point to an unsigned char * vari- - able. - - PCRE_INFO_LASTLITERAL - - Return the value of the rightmost literal byte that must exist in any - matched string, other than at its start, if such a byte has been - recorded. The fourth argument should point to an int variable. If there - is no such byte, -1 is returned. For anchored patterns, a last literal - byte is recorded only if it follows something of variable length. For - example, for the pattern /^a\d+z\d+/ the returned value is "z", but for - /^a\dz\d/ the returned value is -1. - - PCRE_INFO_NAMECOUNT - PCRE_INFO_NAMEENTRYSIZE - PCRE_INFO_NAMETABLE - - PCRE supports the use of named as well as numbered capturing parenthe- - ses. The names are just an additional way of identifying the parenthe- - ses, which still acquire a number. A caller that wants to extract data - from a named subpattern must convert the name to a number in order to - access the correct pointers in the output vector (described with - pcre_exec() below). In order to do this, it must first use these three - values to obtain the name-to-number mapping table for the pattern. - - The map consists of a number of fixed-size entries. PCRE_INFO_NAMECOUNT - gives the number of entries, and PCRE_INFO_NAMEENTRYSIZE gives the size - of each entry; both of these return an int value. The entry size - depends on the length of the longest name. PCRE_INFO_NAMETABLE returns - a pointer to the first entry of the table (a pointer to char). The - first two bytes of each entry are the number of the capturing parenthe- - sis, most significant byte first. The rest of the entry is the corre- - sponding name, zero terminated. The names are in alphabetical order. - For example, consider the following pattern (assume PCRE_EXTENDED is - set, so white space - including newlines - is ignored): - - (?P (?P(\d\d)?\d\d) - - (?P\d\d) - (?P\d\d) ) - - There are four named subpatterns, so the table has four entries, and - each entry in the table is eight bytes long. The table is as follows, - with non-printing bytes shows in hex, and undefined bytes shown as ??: - - 00 01 d a t e 00 ?? - 00 05 d a y 00 ?? ?? - 00 04 m o n t h 00 - 00 02 y e a r 00 ?? - - When writing code to extract data from named subpatterns, remember that - the length of each entry may be different for each compiled pattern. - - PCRE_INFO_OPTIONS - - Return a copy of the options with which the pattern was compiled. The - fourth argument should point to an unsigned long int variable. These - option bits are those specified in the call to pcre_compile(), modified - by any top-level option settings within the pattern itself. - - A pattern is automatically anchored by PCRE if all of its top-level - alternatives begin with one of the following: - - ^ unless PCRE_MULTILINE is set - \A always - \G always - .* if PCRE_DOTALL is set and there are no back - references to the subpattern in which .* appears - - For such patterns, the PCRE_ANCHORED bit is set in the options returned - by pcre_fullinfo(). - - PCRE_INFO_SIZE - - Return the size of the compiled pattern, that is, the value that was - passed as the argument to pcre_malloc() when PCRE was getting memory in - which to place the compiled data. The fourth argument should point to a - size_t variable. - - PCRE_INFO_STUDYSIZE - - Returns the size of the data block pointed to by the study_data field - in a pcre_extra block. That is, it is the value that was passed to - pcre_malloc() when PCRE was getting memory into which to place the data - created by pcre_study(). The fourth argument should point to a size_t - variable. - - -OBSOLETE INFO FUNCTION - - int pcre_info(const pcre *code, int *optptr, int *firstcharptr); - - The pcre_info() function is now obsolete because its interface is too - restrictive to return all the available data about a compiled pattern. - New programs should use pcre_fullinfo() instead. The yield of - pcre_info() is the number of capturing subpatterns, or one of the fol- - lowing negative numbers: - - PCRE_ERROR_NULL the argument code was NULL - PCRE_ERROR_BADMAGIC the "magic number" was not found - - If the optptr argument is not NULL, a copy of the options with which - the pattern was compiled is placed in the integer it points to (see - PCRE_INFO_OPTIONS above). - - If the pattern is not anchored and the firstcharptr argument is not - NULL, it is used to pass back information about the first character of - any matched string (see PCRE_INFO_FIRSTBYTE above). - - -MATCHING A PATTERN - - int pcre_exec(const pcre *code, const pcre_extra *extra, - const char *subject, int length, int startoffset, - int options, int *ovector, int ovecsize); - - The function pcre_exec() is called to match a subject string against a - pre-compiled pattern, which is passed in the code argument. If the pat- - tern has been studied, the result of the study should be passed in the - extra argument. - - Here is an example of a simple call to pcre_exec(): - - int rc; - int ovector[30]; - rc = pcre_exec( - re, /* result of pcre_compile() */ - NULL, /* we didn't study the pattern */ - "some string", /* the subject string */ - 11, /* the length of the subject string */ - 0, /* start at offset 0 in the subject */ - 0, /* default options */ - ovector, /* vector for substring information */ - 30); /* number of elements in the vector */ - - If the extra argument is not NULL, it must point to a pcre_extra data - block. The pcre_study() function returns such a block (when it doesn't - return NULL), but you can also create one for yourself, and pass addi- - tional information in it. The fields in the block are as follows: - - unsigned long int flags; - void *study_data; - unsigned long int match_limit; - void *callout_data; - - The flags field is a bitmap that specifies which of the other fields - are set. The flag bits are: - - PCRE_EXTRA_STUDY_DATA - PCRE_EXTRA_MATCH_LIMIT - PCRE_EXTRA_CALLOUT_DATA - - Other flag bits should be set to zero. The study_data field is set in - the pcre_extra block that is returned by pcre_study(), together with - the appropriate flag bit. You should not set this yourself, but you can - add to the block by setting the other fields. - - The match_limit field provides a means of preventing PCRE from using up - a vast amount of resources when running patterns that are not going to - match, but which have a very large number of possibilities in their - search trees. The classic example is the use of nested unlimited - repeats. Internally, PCRE uses a function called match() which it calls - repeatedly (sometimes recursively). The limit is imposed on the number - of times this function is called during a match, which has the effect - of limiting the amount of recursion and backtracking that can take - place. For patterns that are not anchored, the count starts from zero - for each position in the subject string. - - The default limit for the library can be set when PCRE is built; the - default default is 10 million, which handles all but the most extreme - cases. You can reduce the default by suppling pcre_exec() with a - pcre_extra block in which match_limit is set to a smaller value, and - PCRE_EXTRA_MATCH_LIMIT is set in the flags field. If the limit is - exceeded, pcre_exec() returns PCRE_ERROR_MATCHLIMIT. - - The pcre_callout field is used in conjunction with the "callout" fea- - ture, which is described in the pcrecallout documentation. - - The PCRE_ANCHORED option can be passed in the options argument, whose - unused bits must be zero. This limits pcre_exec() to matching at the - first matching position. However, if a pattern was compiled with - PCRE_ANCHORED, or turned out to be anchored by virtue of its contents, - it cannot be made unachored at matching time. - - When PCRE_UTF8 was set at compile time, the validity of the subject as - a UTF-8 string is automatically checked, and the value of startoffset - is also checked to ensure that it points to the start of a UTF-8 char- - acter. If an invalid UTF-8 sequence of bytes is found, pcre_exec() - returns the error PCRE_ERROR_BADUTF8. If startoffset contains an - invalid value, PCRE_ERROR_BADUTF8_OFFSET is returned. - - If you already know that your subject is valid, and you want to skip - these checks for performance reasons, you can set the - PCRE_NO_UTF8_CHECK option when calling pcre_exec(). You might want to - do this for the second and subsequent calls to pcre_exec() if you are - making repeated calls to find all the matches in a single subject - string. However, you should be sure that the value of startoffset - points to the start of a UTF-8 character. When PCRE_NO_UTF8_CHECK is - set, the effect of passing an invalid UTF-8 string as a subject, or a - value of startoffset that does not point to the start of a UTF-8 char- - acter, is undefined. Your program may crash. - - There are also three further options that can be set only at matching - time: - - PCRE_NOTBOL - - The first character of the string is not the beginning of a line, so - the circumflex metacharacter should not match before it. Setting this - without PCRE_MULTILINE (at compile time) causes circumflex never to - match. - - PCRE_NOTEOL - - The end of the string is not the end of a line, so the dollar metachar- - acter should not match it nor (except in multiline mode) a newline - immediately before it. Setting this without PCRE_MULTILINE (at compile - time) causes dollar never to match. - - PCRE_NOTEMPTY - - An empty string is not considered to be a valid match if this option is - set. If there are alternatives in the pattern, they are tried. If all - the alternatives match the empty string, the entire match fails. For - example, if the pattern - - a?b? - - is applied to a string not beginning with "a" or "b", it matches the - empty string at the start of the subject. With PCRE_NOTEMPTY set, this - match is not valid, so PCRE searches further into the string for occur- - rences of "a" or "b". - - Perl has no direct equivalent of PCRE_NOTEMPTY, but it does make a spe- - cial case of a pattern match of the empty string within its split() - function, and when using the /g modifier. It is possible to emulate - Perl's behaviour after matching a null string by first trying the match - again at the same offset with PCRE_NOTEMPTY set, and then if that fails - by advancing the starting offset (see below) and trying an ordinary - match again. - - The subject string is passed to pcre_exec() as a pointer in subject, a - length in length, and a starting byte offset in startoffset. Unlike the - pattern string, the subject may contain binary zero bytes. When the - starting offset is zero, the search for a match starts at the beginning - of the subject, and this is by far the most common case. - - If the pattern was compiled with the PCRE_UTF8 option, the subject must - be a sequence of bytes that is a valid UTF-8 string, and the starting - offset must point to the beginning of a UTF-8 character. If an invalid - UTF-8 string or offset is passed, an error (either PCRE_ERROR_BADUTF8 - or PCRE_ERROR_BADUTF8_OFFSET) is returned, unless the option - PCRE_NO_UTF8_CHECK is set, in which case PCRE's behaviour is not - defined. - - A non-zero starting offset is useful when searching for another match - in the same subject by calling pcre_exec() again after a previous suc- - cess. Setting startoffset differs from just passing over a shortened - string and setting PCRE_NOTBOL in the case of a pattern that begins - with any kind of lookbehind. For example, consider the pattern - - \Biss\B - - which finds occurrences of "iss" in the middle of words. (\B matches - only if the current position in the subject is not a word boundary.) - When applied to the string "Mississipi" the first call to pcre_exec() - finds the first occurrence. If pcre_exec() is called again with just - the remainder of the subject, namely "issipi", it does not match, - because \B is always false at the start of the subject, which is deemed - to be a word boundary. However, if pcre_exec() is passed the entire - string again, but with startoffset set to 4, it finds the second - occurrence of "iss" because it is able to look behind the starting - point to discover that it is preceded by a letter. - - If a non-zero starting offset is passed when the pattern is anchored, - one attempt to match at the given offset is tried. This can only suc- - ceed if the pattern does not require the match to be at the start of - the subject. - - In general, a pattern matches a certain portion of the subject, and in - addition, further substrings from the subject may be picked out by - parts of the pattern. Following the usage in Jeffrey Friedl's book, - this is called "capturing" in what follows, and the phrase "capturing - subpattern" is used for a fragment of a pattern that picks out a sub- - string. PCRE supports several other kinds of parenthesized subpattern - that do not cause substrings to be captured. - - Captured substrings are returned to the caller via a vector of integer - offsets whose address is passed in ovector. The number of elements in - the vector is passed in ovecsize. The first two-thirds of the vector is - used to pass back captured substrings, each substring using a pair of - integers. The remaining third of the vector is used as workspace by - pcre_exec() while matching capturing subpatterns, and is not available - for passing back information. The length passed in ovecsize should - always be a multiple of three. If it is not, it is rounded down. - - When a match has been successful, information about captured substrings - is returned in pairs of integers, starting at the beginning of ovector, - and continuing up to two-thirds of its length at the most. The first - element of a pair is set to the offset of the first character in a sub- - string, and the second is set to the offset of the first character - after the end of a substring. The first pair, ovector[0] and ovec- - tor[1], identify the portion of the subject string matched by the - entire pattern. The next pair is used for the first capturing subpat- - tern, and so on. The value returned by pcre_exec() is the number of - pairs that have been set. If there are no capturing subpatterns, the - return value from a successful match is 1, indicating that just the - first pair of offsets has been set. - - Some convenience functions are provided for extracting the captured - substrings as separate strings. These are described in the following - section. - - It is possible for an capturing subpattern number n+1 to match some - part of the subject when subpattern n has not been used at all. For - example, if the string "abc" is matched against the pattern (a|(z))(bc) - subpatterns 1 and 3 are matched, but 2 is not. When this happens, both - offset values corresponding to the unused subpattern are set to -1. - - If a capturing subpattern is matched repeatedly, it is the last portion - of the string that it matched that gets returned. - - If the vector is too small to hold all the captured substrings, it is - used as far as possible (up to two-thirds of its length), and the func- - tion returns a value of zero. In particular, if the substring offsets - are not of interest, pcre_exec() may be called with ovector passed as - NULL and ovecsize as zero. However, if the pattern contains back refer- - ences and the ovector isn't big enough to remember the related sub- - strings, PCRE has to get additional memory for use during matching. - Thus it is usually advisable to supply an ovector. - - Note that pcre_info() can be used to find out how many capturing sub- - patterns there are in a compiled pattern. The smallest size for ovector - that will allow for n captured substrings, in addition to the offsets - of the substring matched by the whole pattern, is (n+1)*3. - - If pcre_exec() fails, it returns a negative number. The following are - defined in the header file: - - PCRE_ERROR_NOMATCH (-1) - - The subject string did not match the pattern. - - PCRE_ERROR_NULL (-2) - - Either code or subject was passed as NULL, or ovector was NULL and - ovecsize was not zero. - - PCRE_ERROR_BADOPTION (-3) - - An unrecognized bit was set in the options argument. - - PCRE_ERROR_BADMAGIC (-4) - - PCRE stores a 4-byte "magic number" at the start of the compiled code, - to catch the case when it is passed a junk pointer. This is the error - it gives when the magic number isn't present. - - PCRE_ERROR_UNKNOWN_NODE (-5) - - While running the pattern match, an unknown item was encountered in the - compiled pattern. This error could be caused by a bug in PCRE or by - overwriting of the compiled pattern. - - PCRE_ERROR_NOMEMORY (-6) - - If a pattern contains back references, but the ovector that is passed - to pcre_exec() is not big enough to remember the referenced substrings, - PCRE gets a block of memory at the start of matching to use for this - purpose. If the call via pcre_malloc() fails, this error is given. The - memory is freed at the end of matching. - - PCRE_ERROR_NOSUBSTRING (-7) - - This error is used by the pcre_copy_substring(), pcre_get_substring(), - and pcre_get_substring_list() functions (see below). It is never - returned by pcre_exec(). - - PCRE_ERROR_MATCHLIMIT (-8) - - The recursion and backtracking limit, as specified by the match_limit - field in a pcre_extra structure (or defaulted) was reached. See the - description above. - - PCRE_ERROR_CALLOUT (-9) - - This error is never generated by pcre_exec() itself. It is provided for - use by callout functions that want to yield a distinctive error code. - See the pcrecallout documentation for details. - - PCRE_ERROR_BADUTF8 (-10) - - A string that contains an invalid UTF-8 byte sequence was passed as a - subject. - - PCRE_ERROR_BADUTF8_OFFSET (-11) - - The UTF-8 byte sequence that was passed as a subject was valid, but the - value of startoffset did not point to the beginning of a UTF-8 charac- - ter. - - -EXTRACTING CAPTURED SUBSTRINGS BY NUMBER - - int pcre_copy_substring(const char *subject, int *ovector, - int stringcount, int stringnumber, char *buffer, - int buffersize); - - int pcre_get_substring(const char *subject, int *ovector, - int stringcount, int stringnumber, - const char **stringptr); - - int pcre_get_substring_list(const char *subject, - int *ovector, int stringcount, const char ***listptr); - - Captured substrings can be accessed directly by using the offsets - returned by pcre_exec() in ovector. For convenience, the functions - pcre_copy_substring(), pcre_get_substring(), and pcre_get_sub- - string_list() are provided for extracting captured substrings as new, - separate, zero-terminated strings. These functions identify substrings - by number. The next section describes functions for extracting named - substrings. A substring that contains a binary zero is correctly - extracted and has a further zero added on the end, but the result is - not, of course, a C string. - - The first three arguments are the same for all three of these func- - tions: subject is the subject string which has just been successfully - matched, ovector is a pointer to the vector of integer offsets that was - passed to pcre_exec(), and stringcount is the number of substrings that - were captured by the match, including the substring that matched the - entire regular expression. This is the value returned by pcre_exec if - it is greater than zero. If pcre_exec() returned zero, indicating that - it ran out of space in ovector, the value passed as stringcount should - be the size of the vector divided by three. - - The functions pcre_copy_substring() and pcre_get_substring() extract a - single substring, whose number is given as stringnumber. A value of - zero extracts the substring that matched the entire pattern, while - higher values extract the captured substrings. For pcre_copy_sub- - string(), the string is placed in buffer, whose length is given by - buffersize, while for pcre_get_substring() a new block of memory is - obtained via pcre_malloc, and its address is returned via stringptr. - The yield of the function is the length of the string, not including - the terminating zero, or one of - - PCRE_ERROR_NOMEMORY (-6) - - The buffer was too small for pcre_copy_substring(), or the attempt to - get memory failed for pcre_get_substring(). - - PCRE_ERROR_NOSUBSTRING (-7) - - There is no substring whose number is stringnumber. - - The pcre_get_substring_list() function extracts all available sub- - strings and builds a list of pointers to them. All this is done in a - single block of memory which is obtained via pcre_malloc. The address - of the memory block is returned via listptr, which is also the start of - the list of string pointers. The end of the list is marked by a NULL - pointer. The yield of the function is zero if all went well, or - - PCRE_ERROR_NOMEMORY (-6) - - if the attempt to get the memory block failed. - - When any of these functions encounter a substring that is unset, which - can happen when capturing subpattern number n+1 matches some part of - the subject, but subpattern n has not been used at all, they return an - empty string. This can be distinguished from a genuine zero-length sub- - string by inspecting the appropriate offset in ovector, which is nega- - tive for unset substrings. - - The two convenience functions pcre_free_substring() and - pcre_free_substring_list() can be used to free the memory returned by a - previous call of pcre_get_substring() or pcre_get_substring_list(), - respectively. They do nothing more than call the function pointed to by - pcre_free, which of course could be called directly from a C program. - However, PCRE is used in some situations where it is linked via a spe- - cial interface to another programming language which cannot use - pcre_free directly; it is for these cases that the functions are pro- - vided. - - -EXTRACTING CAPTURED SUBSTRINGS BY NAME - - int pcre_copy_named_substring(const pcre *code, - const char *subject, int *ovector, - int stringcount, const char *stringname, - char *buffer, int buffersize); - - int pcre_get_stringnumber(const pcre *code, - const char *name); - - int pcre_get_named_substring(const pcre *code, - const char *subject, int *ovector, - int stringcount, const char *stringname, - const char **stringptr); - - To extract a substring by name, you first have to find associated num- - ber. This can be done by calling pcre_get_stringnumber(). The first - argument is the compiled pattern, and the second is the name. For exam- - ple, for this pattern - - ab(?\d+)... - - the number of the subpattern called "xxx" is 1. Given the number, you - can then extract the substring directly, or use one of the functions - described in the previous section. For convenience, there are also two - functions that do the whole job. - - Most of the arguments of pcre_copy_named_substring() and - pcre_get_named_substring() are the same as those for the functions that - extract by number, and so are not re-described here. There are just two - differences. - - First, instead of a substring number, a substring name is given. Sec- - ond, there is an extra argument, given at the start, which is a pointer - to the compiled pattern. This is needed in order to gain access to the - name-to-number translation table. - - These functions call pcre_get_stringnumber(), and if it succeeds, they - then call pcre_copy_substring() or pcre_get_substring(), as appropri- - ate. - -Last updated: 09 December 2003 -Copyright (c) 1997-2003 University of Cambridge. ------------------------------------------------------------------------------ - -PCRE(3) PCRE(3) - - - -NAME - PCRE - Perl-compatible regular expressions - -PCRE CALLOUTS - - int (*pcre_callout)(pcre_callout_block *); - - PCRE provides a feature called "callout", which is a means of temporar- - ily passing control to the caller of PCRE in the middle of pattern - matching. The caller of PCRE provides an external function by putting - its entry point in the global variable pcre_callout. By default, this - variable contains NULL, which disables all calling out. - - Within a regular expression, (?C) indicates the points at which the - external function is to be called. Different callout points can be - identified by putting a number less than 256 after the letter C. The - default value is zero. For example, this pattern has two callout - points: - - (?C1)abc(?C2)def - - During matching, when PCRE reaches a callout point (and pcre_callout is - set), the external function is called. Its only argument is a pointer - to a pcre_callout block. This contains the following variables: - - int version; - int callout_number; - int *offset_vector; - const char *subject; - int subject_length; - int start_match; - int current_position; - int capture_top; - int capture_last; - void *callout_data; - - The version field is an integer containing the version number of the - block format. The current version is zero. The version number may - change in future if additional fields are added, but the intention is - never to remove any of the existing fields. - - The callout_number field contains the number of the callout, as com- - piled into the pattern (that is, the number after ?C). - - The offset_vector field is a pointer to the vector of offsets that was - passed by the caller to pcre_exec(). The contents can be inspected in - order to extract substrings that have been matched so far, in the same - way as for extracting substrings after a match has completed. - - The subject and subject_length fields contain copies the values that - were passed to pcre_exec(). - - The start_match field contains the offset within the subject at which - the current match attempt started. If the pattern is not anchored, the - callout function may be called several times for different starting - points. - - The current_position field contains the offset within the subject of - the current match pointer. - - The capture_top field contains one more than the number of the highest - numbered captured substring so far. If no substrings have been - captured, the value of capture_top is one. - - The capture_last field contains the number of the most recently cap- - tured substring. - - The callout_data field contains a value that is passed to pcre_exec() - by the caller specifically so that it can be passed back in callouts. - It is passed in the pcre_callout field of the pcre_extra data struc- - ture. If no such data was passed, the value of callout_data in a - pcre_callout block is NULL. There is a description of the pcre_extra - structure in the pcreapi documentation. - - - -RETURN VALUES - - The callout function returns an integer. If the value is zero, matching - proceeds as normal. If the value is greater than zero, matching fails - at the current point, but backtracking to test other possibilities goes - ahead, just as if a lookahead assertion had failed. If the value is - less than zero, the match is abandoned, and pcre_exec() returns the - value. - - Negative values should normally be chosen from the set of - PCRE_ERROR_xxx values. In particular, PCRE_ERROR_NOMATCH forces a stan- - dard "no match" failure. The error number PCRE_ERROR_CALLOUT is - reserved for use by callout functions; it will never be used by PCRE - itself. - -Last updated: 21 January 2003 -Copyright (c) 1997-2003 University of Cambridge. ------------------------------------------------------------------------------ - -PCRE(3) PCRE(3) - - - -NAME - PCRE - Perl-compatible regular expressions - -DIFFERENCES FROM PERL - - This document describes the differences in the ways that PCRE and Perl - handle regular expressions. The differences described here are with - respect to Perl 5.8. - - 1. PCRE does not have full UTF-8 support. Details of what it does have - are given in the section on UTF-8 support in the main pcre page. - - 2. PCRE does not allow repeat quantifiers on lookahead assertions. Perl - permits them, but they do not mean what you might think. For example, - (?!a){3} does not assert that the next three characters are not "a". It - just asserts that the next character is not "a" three times. - - 3. Capturing subpatterns that occur inside negative lookahead asser- - tions are counted, but their entries in the offsets vector are never - set. Perl sets its numerical variables from any such patterns that are - matched before the assertion fails to match something (thereby succeed- - ing), but only if the negative lookahead assertion contains just one - branch. - - 4. Though binary zero characters are supported in the subject string, - they are not allowed in a pattern string because it is passed as a nor- - mal C string, terminated by zero. The escape sequence "\0" can be used - in the pattern to represent a binary zero. - - 5. The following Perl escape sequences are not supported: \l, \u, \L, - \U, \P, \p, \N, and \X. In fact these are implemented by Perl's general - string-handling and are not part of its pattern matching engine. If any - of these are encountered by PCRE, an error is generated. - - 6. PCRE does support the \Q...\E escape for quoting substrings. Charac- - ters in between are treated as literals. This is slightly different - from Perl in that $ and @ are also handled as literals inside the - quotes. In Perl, they cause variable interpolation (but of course PCRE - does not have variables). Note the following examples: - - Pattern PCRE matches Perl matches - - \Qabc$xyz\E abc$xyz abc followed by the - contents of $xyz - \Qabc\$xyz\E abc\$xyz abc\$xyz - \Qabc\E\$\Qxyz\E abc$xyz abc$xyz - - The \Q...\E sequence is recognized both inside and outside character - classes. - - 7. Fairly obviously, PCRE does not support the (?{code}) and (?p{code}) - constructions. However, there is some experimental support for recur- - sive patterns using the non-Perl items (?R), (?number) and (?P>name). - Also, the PCRE "callout" feature allows an external function to be - called during pattern matching. - - 8. There are some differences that are concerned with the settings of - captured strings when part of a pattern is repeated. For example, - matching "aba" against the pattern /^(a(b)?)+$/ in Perl leaves $2 - unset, but in PCRE it is set to "b". - - 9. PCRE provides some extensions to the Perl regular expression - facilities: - - (a) Although lookbehind assertions must match fixed length strings, - each alternative branch of a lookbehind assertion can match a different - length of string. Perl requires them all to have the same length. - - (b) If PCRE_DOLLAR_ENDONLY is set and PCRE_MULTILINE is not set, the $ - meta-character matches only at the very end of the string. - - (c) If PCRE_EXTRA is set, a backslash followed by a letter with no spe- - cial meaning is faulted. - - (d) If PCRE_UNGREEDY is set, the greediness of the repetition quanti- - fiers is inverted, that is, by default they are not greedy, but if fol- - lowed by a question mark they are. - - (e) PCRE_ANCHORED can be used to force a pattern to be tried only at - the first matching position in the subject string. - - (f) The PCRE_NOTBOL, PCRE_NOTEOL, PCRE_NOTEMPTY, and PCRE_NO_AUTO_CAP- - TURE options for pcre_exec() have no Perl equivalents. - - (g) The (?R), (?number), and (?P>name) constructs allows for recursive - pattern matching (Perl can do this using the (?p{code}) construct, - which PCRE cannot support.) - - (h) PCRE supports named capturing substrings, using the Python syntax. - - (i) PCRE supports the possessive quantifier "++" syntax, taken from - Sun's Java package. - - (j) The (R) condition, for testing recursion, is a PCRE extension. - - (k) The callout facility is PCRE-specific. - -Last updated: 09 December 2003 -Copyright (c) 1997-2003 University of Cambridge. ------------------------------------------------------------------------------ - -PCRE(3) PCRE(3) - - - -NAME - PCRE - Perl-compatible regular expressions - -PCRE REGULAR EXPRESSION DETAILS - - The syntax and semantics of the regular expressions supported by PCRE - are described below. Regular expressions are also described in the Perl - documentation and in a number of other books, some of which have copi- - ous examples. Jeffrey Friedl's "Mastering Regular Expressions", pub- - lished by O'Reilly, covers them in great detail. The description here - is intended as reference documentation. - - The basic operation of PCRE is on strings of bytes. However, there is - also support for UTF-8 character strings. To use this support you must - build PCRE to include UTF-8 support, and then call pcre_compile() with - the PCRE_UTF8 option. How this affects the pattern matching is men- - tioned in several places below. There is also a summary of UTF-8 fea- - tures in the section on UTF-8 support in the main pcre page. - - A regular expression is a pattern that is matched against a subject - string from left to right. Most characters stand for themselves in a - pattern, and match the corresponding characters in the subject. As a - trivial example, the pattern - - The quick brown fox - - matches a portion of a subject string that is identical to itself. The - power of regular expressions comes from the ability to include alterna- - tives and repetitions in the pattern. These are encoded in the pattern - by the use of meta-characters, which do not stand for themselves but - instead are interpreted in some special way. - - There are two different sets of meta-characters: those that are recog- - nized anywhere in the pattern except within square brackets, and those - that are recognized in square brackets. Outside square brackets, the - meta-characters are as follows: - - \ general escape character with several uses - ^ assert start of string (or line, in multiline mode) - $ assert end of string (or line, in multiline mode) - . match any character except newline (by default) - [ start character class definition - | start of alternative branch - ( start subpattern - ) end subpattern - ? extends the meaning of ( - also 0 or 1 quantifier - also quantifier minimizer - * 0 or more quantifier - + 1 or more quantifier - also "possessive quantifier" - { start min/max quantifier - - Part of a pattern that is in square brackets is called a "character - class". In a character class the only meta-characters are: - - \ general escape character - ^ negate the class, but only if the first character - - indicates character range - [ POSIX character class (only if followed by POSIX - syntax) - ] terminates the character class - - The following sections describe the use of each of the meta-characters. - - -BACKSLASH - - The backslash character has several uses. Firstly, if it is followed by - a non-alphameric character, it takes away any special meaning that - character may have. This use of backslash as an escape character - applies both inside and outside character classes. - - For example, if you want to match a * character, you write \* in the - pattern. This escaping action applies whether or not the following - character would otherwise be interpreted as a meta-character, so it is - always safe to precede a non-alphameric with backslash to specify that - it stands for itself. In particular, if you want to match a backslash, - you write \\. - - If a pattern is compiled with the PCRE_EXTENDED option, whitespace in - the pattern (other than in a character class) and characters between a - # outside a character class and the next newline character are ignored. - An escaping backslash can be used to include a whitespace or # charac- - ter as part of the pattern. - - If you want to remove the special meaning from a sequence of charac- - ters, you can do so by putting them between \Q and \E. This is differ- - ent from Perl in that $ and @ are handled as literals in \Q...\E - sequences in PCRE, whereas in Perl, $ and @ cause variable interpola- - tion. Note the following examples: - - Pattern PCRE matches Perl matches - - \Qabc$xyz\E abc$xyz abc followed by the - contents of $xyz - \Qabc\$xyz\E abc\$xyz abc\$xyz - \Qabc\E\$\Qxyz\E abc$xyz abc$xyz - - The \Q...\E sequence is recognized both inside and outside character - classes. - - A second use of backslash provides a way of encoding non-printing char- - acters in patterns in a visible manner. There is no restriction on the - appearance of non-printing characters, apart from the binary zero that - terminates a pattern, but when a pattern is being prepared by text - editing, it is usually easier to use one of the following escape - sequences than the binary character it represents: - - \a alarm, that is, the BEL character (hex 07) - \cx "control-x", where x is any character - \e escape (hex 1B) - \f formfeed (hex 0C) - \n newline (hex 0A) - \r carriage return (hex 0D) - \t tab (hex 09) - \ddd character with octal code ddd, or backreference - \xhh character with hex code hh - \x{hhh..} character with hex code hhh... (UTF-8 mode only) - - The precise effect of \cx is as follows: if x is a lower case letter, - it is converted to upper case. Then bit 6 of the character (hex 40) is - inverted. Thus \cz becomes hex 1A, but \c{ becomes hex 3B, while \c; - becomes hex 7B. - - After \x, from zero to two hexadecimal digits are read (letters can be - in upper or lower case). In UTF-8 mode, any number of hexadecimal dig- - its may appear between \x{ and }, but the value of the character code - must be less than 2**31 (that is, the maximum hexadecimal value is - 7FFFFFFF). If characters other than hexadecimal digits appear between - \x{ and }, or if there is no terminating }, this form of escape is not - recognized. Instead, the initial \x will be interpreted as a basic hex- - adecimal escape, with no following digits, giving a byte whose value is - zero. - - Characters whose value is less than 256 can be defined by either of the - two syntaxes for \x when PCRE is in UTF-8 mode. There is no difference - in the way they are handled. For example, \xdc is exactly the same as - \x{dc}. - - After \0 up to two further octal digits are read. In both cases, if - there are fewer than two digits, just those that are present are used. - Thus the sequence \0\x\07 specifies two binary zeros followed by a BEL - character (code value 7). Make sure you supply two digits after the - initial zero if the character that follows is itself an octal digit. - - The handling of a backslash followed by a digit other than 0 is compli- - cated. Outside a character class, PCRE reads it and any following dig- - its as a decimal number. If the number is less than 10, or if there - have been at least that many previous capturing left parentheses in the - expression, the entire sequence is taken as a back reference. A - description of how this works is given later, following the discussion - of parenthesized subpatterns. - - Inside a character class, or if the decimal number is greater than 9 - and there have not been that many capturing subpatterns, PCRE re-reads - up to three octal digits following the backslash, and generates a sin- - gle byte from the least significant 8 bits of the value. Any subsequent - digits stand for themselves. For example: - - \040 is another way of writing a space - \40 is the same, provided there are fewer than 40 - previous capturing subpatterns - \7 is always a back reference - \11 might be a back reference, or another way of - writing a tab - \011 is always a tab - \0113 is a tab followed by the character "3" - \113 might be a back reference, otherwise the - character with octal code 113 - \377 might be a back reference, otherwise - the byte consisting entirely of 1 bits - \81 is either a back reference, or a binary zero - followed by the two characters "8" and "1" - - Note that octal values of 100 or greater must not be introduced by a - leading zero, because no more than three octal digits are ever read. - - All the sequences that define a single byte value or a single UTF-8 - character (in UTF-8 mode) can be used both inside and outside character - classes. In addition, inside a character class, the sequence \b is - interpreted as the backspace character (hex 08). Outside a character - class it has a different meaning (see below). - - The third use of backslash is for specifying generic character types: - - \d any decimal digit - \D any character that is not a decimal digit - \s any whitespace character - \S any character that is not a whitespace character - \w any "word" character - \W any "non-word" character - - Each pair of escape sequences partitions the complete set of characters - into two disjoint sets. Any given character matches one, and only one, - of each pair. - - In UTF-8 mode, characters with values greater than 255 never match \d, - \s, or \w, and always match \D, \S, and \W. - - For compatibility with Perl, \s does not match the VT character (code - 11). This makes it different from the the POSIX "space" class. The \s - characters are HT (9), LF (10), FF (12), CR (13), and space (32). - - A "word" character is any letter or digit or the underscore character, - that is, any character which can be part of a Perl "word". The defini- - tion of letters and digits is controlled by PCRE's character tables, - and may vary if locale- specific matching is taking place (see "Locale - support" in the pcreapi page). For example, in the "fr" (French) - locale, some character codes greater than 128 are used for accented - letters, and these are matched by \w. - - These character type sequences can appear both inside and outside char- - acter classes. They each match one character of the appropriate type. - If the current matching point is at the end of the subject string, all - of them fail, since there is no character to match. - - The fourth use of backslash is for certain simple assertions. An asser- - tion specifies a condition that has to be met at a particular point in - a match, without consuming any characters from the subject string. The - use of subpatterns for more complicated assertions is described below. - The backslashed assertions are - - \b matches at a word boundary - \B matches when not at a word boundary - \A matches at start of subject - \Z matches at end of subject or before newline at end - \z matches at end of subject - \G matches at first matching position in subject - - These assertions may not appear in character classes (but note that \b - has a different meaning, namely the backspace character, inside a char- - acter class). - - A word boundary is a position in the subject string where the current - character and the previous character do not both match \w or \W (i.e. - one matches \w and the other matches \W), or the start or end of the - string if the first or last character matches \w, respectively. - - The \A, \Z, and \z assertions differ from the traditional circumflex - and dollar (described below) in that they only ever match at the very - start and end of the subject string, whatever options are set. Thus, - they are independent of multiline mode. - - They are not affected by the PCRE_NOTBOL or PCRE_NOTEOL options. If the - startoffset argument of pcre_exec() is non-zero, indicating that match- - ing is to start at a point other than the beginning of the subject, \A - can never match. The difference between \Z and \z is that \Z matches - before a newline that is the last character of the string as well as at - the end of the string, whereas \z matches only at the end. - - The \G assertion is true only when the current matching position is at - the start point of the match, as specified by the startoffset argument - of pcre_exec(). It differs from \A when the value of startoffset is - non-zero. By calling pcre_exec() multiple times with appropriate argu- - ments, you can mimic Perl's /g option, and it is in this kind of imple- - mentation where \G can be useful. - - Note, however, that PCRE's interpretation of \G, as the start of the - current match, is subtly different from Perl's, which defines it as the - end of the previous match. In Perl, these can be different when the - previously matched string was empty. Because PCRE does just one match - at a time, it cannot reproduce this behaviour. - - If all the alternatives of a pattern begin with \G, the expression is - anchored to the starting match position, and the "anchored" flag is set - in the compiled regular expression. - - -CIRCUMFLEX AND DOLLAR - - Outside a character class, in the default matching mode, the circumflex - character is an assertion which is true only if the current matching - point is at the start of the subject string. If the startoffset argu- - ment of pcre_exec() is non-zero, circumflex can never match if the - PCRE_MULTILINE option is unset. Inside a character class, circumflex - has an entirely different meaning (see below). - - Circumflex need not be the first character of the pattern if a number - of alternatives are involved, but it should be the first thing in each - alternative in which it appears if the pattern is ever to match that - branch. If all possible alternatives start with a circumflex, that is, - if the pattern is constrained to match only at the start of the sub- - ject, it is said to be an "anchored" pattern. (There are also other - constructs that can cause a pattern to be anchored.) - - A dollar character is an assertion which is true only if the current - matching point is at the end of the subject string, or immediately - before a newline character that is the last character in the string (by - default). Dollar need not be the last character of the pattern if a - number of alternatives are involved, but it should be the last item in - any branch in which it appears. Dollar has no special meaning in a - character class. - - The meaning of dollar can be changed so that it matches only at the - very end of the string, by setting the PCRE_DOLLAR_ENDONLY option at - compile time. This does not affect the \Z assertion. - - The meanings of the circumflex and dollar characters are changed if the - PCRE_MULTILINE option is set. When this is the case, they match immedi- - ately after and immediately before an internal newline character, - respectively, in addition to matching at the start and end of the sub- - ject string. For example, the pattern /^abc$/ matches the subject - string "def\nabc" in multiline mode, but not otherwise. Consequently, - patterns that are anchored in single line mode because all branches - start with ^ are not anchored in multiline mode, and a match for cir- - cumflex is possible when the startoffset argument of pcre_exec() is - non-zero. The PCRE_DOLLAR_ENDONLY option is ignored if PCRE_MULTILINE - is set. - - Note that the sequences \A, \Z, and \z can be used to match the start - and end of the subject in both modes, and if all branches of a pattern - start with \A it is always anchored, whether PCRE_MULTILINE is set or - not. - - -FULL STOP (PERIOD, DOT) - - Outside a character class, a dot in the pattern matches any one charac- - ter in the subject, including a non-printing character, but not (by - default) newline. In UTF-8 mode, a dot matches any UTF-8 character, - which might be more than one byte long, except (by default) for new- - line. If the PCRE_DOTALL option is set, dots match newlines as well. - The handling of dot is entirely independent of the handling of circum- - flex and dollar, the only relationship being that they both involve - newline characters. Dot has no special meaning in a character class. - - -MATCHING A SINGLE BYTE - - Outside a character class, the escape sequence \C matches any one byte, - both in and out of UTF-8 mode. Unlike a dot, it always matches a new- - line. The feature is provided in Perl in order to match individual - bytes in UTF-8 mode. Because it breaks up UTF-8 characters into indi- - vidual bytes, what remains in the string may be a malformed UTF-8 - string. For this reason it is best avoided. - - PCRE does not allow \C to appear in lookbehind assertions (see below), - because in UTF-8 mode it makes it impossible to calculate the length of - the lookbehind. - - -SQUARE BRACKETS - - An opening square bracket introduces a character class, terminated by a - closing square bracket. A closing square bracket on its own is not spe- - cial. If a closing square bracket is required as a member of the class, - it should be the first data character in the class (after an initial - circumflex, if present) or escaped with a backslash. - - A character class matches a single character in the subject. In UTF-8 - mode, the character may occupy more than one byte. A matched character - must be in the set of characters defined by the class, unless the first - character in the class definition is a circumflex, in which case the - subject character must not be in the set defined by the class. If a - circumflex is actually required as a member of the class, ensure it is - not the first character, or escape it with a backslash. - - For example, the character class [aeiou] matches any lower case vowel, - while [^aeiou] matches any character that is not a lower case vowel. - Note that a circumflex is just a convenient notation for specifying the - characters which are in the class by enumerating those that are not. It - is not an assertion: it still consumes a character from the subject - string, and fails if the current pointer is at the end of the string. - - In UTF-8 mode, characters with values greater than 255 can be included - in a class as a literal string of bytes, or by using the \x{ escaping - mechanism. - - When caseless matching is set, any letters in a class represent both - their upper case and lower case versions, so for example, a caseless - [aeiou] matches "A" as well as "a", and a caseless [^aeiou] does not - match "A", whereas a caseful version would. PCRE does not support the - concept of case for characters with values greater than 255. - - The newline character is never treated in any special way in character - classes, whatever the setting of the PCRE_DOTALL or PCRE_MULTILINE - options is. A class such as [^a] will always match a newline. - - The minus (hyphen) character can be used to specify a range of charac- - ters in a character class. For example, [d-m] matches any letter - between d and m, inclusive. If a minus character is required in a - class, it must be escaped with a backslash or appear in a position - where it cannot be interpreted as indicating a range, typically as the - first or last character in the class. - - It is not possible to have the literal character "]" as the end charac- - ter of a range. A pattern such as [W-]46] is interpreted as a class of - two characters ("W" and "-") followed by a literal string "46]", so it - would match "W46]" or "-46]". However, if the "]" is escaped with a - backslash it is interpreted as the end of range, so [W-\]46] is inter- - preted as a single class containing a range followed by two separate - characters. The octal or hexadecimal representation of "]" can also be - used to end a range. - - Ranges operate in the collating sequence of character values. They can - also be used for characters specified numerically, for example - [\000-\037]. In UTF-8 mode, ranges can include characters whose values - are greater than 255, for example [\x{100}-\x{2ff}]. - - If a range that includes letters is used when caseless matching is set, - it matches the letters in either case. For example, [W-c] is equivalent - to [][\^_`wxyzabc], matched caselessly, and if character tables for the - "fr" locale are in use, [\xc8-\xcb] matches accented E characters in - both cases. - - The character types \d, \D, \s, \S, \w, and \W may also appear in a - character class, and add the characters that they match to the class. - For example, [\dABCDEF] matches any hexadecimal digit. A circumflex can - conveniently be used with the upper case character types to specify a - more restricted set of characters than the matching lower case type. - For example, the class [^\W_] matches any letter or digit, but not - underscore. - - All non-alphameric characters other than \, -, ^ (at the start) and the - terminating ] are non-special in character classes, but it does no harm - if they are escaped. - - -POSIX CHARACTER CLASSES - - Perl supports the POSIX notation for character classes, which uses - names enclosed by [: and :] within the enclosing square brackets. PCRE - also supports this notation. For example, - - [01[:alpha:]%] - - matches "0", "1", any alphabetic character, or "%". The supported class - names are - - alnum letters and digits - alpha letters - ascii character codes 0 - 127 - blank space or tab only - cntrl control characters - digit decimal digits (same as \d) - graph printing characters, excluding space - lower lower case letters - print printing characters, including space - punct printing characters, excluding letters and digits - space white space (not quite the same as \s) - upper upper case letters - word "word" characters (same as \w) - xdigit hexadecimal digits - - The "space" characters are HT (9), LF (10), VT (11), FF (12), CR (13), - and space (32). Notice that this list includes the VT character (code - 11). This makes "space" different to \s, which does not include VT (for - Perl compatibility). - - The name "word" is a Perl extension, and "blank" is a GNU extension - from Perl 5.8. Another Perl extension is negation, which is indicated - by a ^ character after the colon. For example, - - [12[:^digit:]] - - matches "1", "2", or any non-digit. PCRE (and Perl) also recognize the - POSIX syntax [.ch.] and [=ch=] where "ch" is a "collating element", but - these are not supported, and an error is given if they are encountered. - - In UTF-8 mode, characters with values greater than 255 do not match any - of the POSIX character classes. - - -VERTICAL BAR - - Vertical bar characters are used to separate alternative patterns. For - example, the pattern - - gilbert|sullivan - - matches either "gilbert" or "sullivan". Any number of alternatives may - appear, and an empty alternative is permitted (matching the empty - string). The matching process tries each alternative in turn, from - left to right, and the first one that succeeds is used. If the alterna- - tives are within a subpattern (defined below), "succeeds" means match- - ing the rest of the main pattern as well as the alternative in the sub- - pattern. - - -INTERNAL OPTION SETTING - - The settings of the PCRE_CASELESS, PCRE_MULTILINE, PCRE_DOTALL, and - PCRE_EXTENDED options can be changed from within the pattern by a - sequence of Perl option letters enclosed between "(?" and ")". The - option letters are - - i for PCRE_CASELESS - m for PCRE_MULTILINE - s for PCRE_DOTALL - x for PCRE_EXTENDED - - For example, (?im) sets caseless, multiline matching. It is also possi- - ble to unset these options by preceding the letter with a hyphen, and a - combined setting and unsetting such as (?im-sx), which sets PCRE_CASE- - LESS and PCRE_MULTILINE while unsetting PCRE_DOTALL and PCRE_EXTENDED, - is also permitted. If a letter appears both before and after the - hyphen, the option is unset. - - When an option change occurs at top level (that is, not inside subpat- - tern parentheses), the change applies to the remainder of the pattern - that follows. If the change is placed right at the start of a pattern, - PCRE extracts it into the global options (and it will therefore show up - in data extracted by the pcre_fullinfo() function). - - An option change within a subpattern affects only that part of the cur- - rent pattern that follows it, so - - (a(?i)b)c - - matches abc and aBc and no other strings (assuming PCRE_CASELESS is not - used). By this means, options can be made to have different settings - in different parts of the pattern. Any changes made in one alternative - do carry on into subsequent branches within the same subpattern. For - example, - - (a(?i)b|c) - - matches "ab", "aB", "c", and "C", even though when matching "C" the - first branch is abandoned before the option setting. This is because - the effects of option settings happen at compile time. There would be - some very weird behaviour otherwise. - - The PCRE-specific options PCRE_UNGREEDY and PCRE_EXTRA can be changed - in the same way as the Perl-compatible options by using the characters - U and X respectively. The (?X) flag setting is special in that it must - always occur earlier in the pattern than any of the additional features - it turns on, even when it is at top level. It is best put at the start. - - -SUBPATTERNS - - Subpatterns are delimited by parentheses (round brackets), which can be - nested. Marking part of a pattern as a subpattern does two things: - - 1. It localizes a set of alternatives. For example, the pattern - - cat(aract|erpillar|) - - matches one of the words "cat", "cataract", or "caterpillar". Without - the parentheses, it would match "cataract", "erpillar" or the empty - string. - - 2. It sets up the subpattern as a capturing subpattern (as defined - above). When the whole pattern matches, that portion of the subject - string that matched the subpattern is passed back to the caller via the - ovector argument of pcre_exec(). Opening parentheses are counted from - left to right (starting from 1) to obtain the numbers of the capturing - subpatterns. - - For example, if the string "the red king" is matched against the pat- - tern - - the ((red|white) (king|queen)) - - the captured substrings are "red king", "red", and "king", and are num- - bered 1, 2, and 3, respectively. - - The fact that plain parentheses fulfil two functions is not always - helpful. There are often times when a grouping subpattern is required - without a capturing requirement. If an opening parenthesis is followed - by a question mark and a colon, the subpattern does not do any captur- - ing, and is not counted when computing the number of any subsequent - capturing subpatterns. For example, if the string "the white queen" is - matched against the pattern - - the ((?:red|white) (king|queen)) - - the captured substrings are "white queen" and "queen", and are numbered - 1 and 2. The maximum number of capturing subpatterns is 65535, and the - maximum depth of nesting of all subpatterns, both capturing and non- - capturing, is 200. - - As a convenient shorthand, if any option settings are required at the - start of a non-capturing subpattern, the option letters may appear - between the "?" and the ":". Thus the two patterns - - (?i:saturday|sunday) - (?:(?i)saturday|sunday) - - match exactly the same set of strings. Because alternative branches are - tried from left to right, and options are not reset until the end of - the subpattern is reached, an option setting in one branch does affect - subsequent branches, so the above patterns match "SUNDAY" as well as - "Saturday". - - -NAMED SUBPATTERNS - - Identifying capturing parentheses by number is simple, but it can be - very hard to keep track of the numbers in complicated regular expres- - sions. Furthermore, if an expression is modified, the numbers may - change. To help with the difficulty, PCRE supports the naming of sub- - patterns, something that Perl does not provide. The Python syntax - (?P...) is used. Names consist of alphanumeric characters and - underscores, and must be unique within a pattern. - - Named capturing parentheses are still allocated numbers as well as - names. The PCRE API provides function calls for extracting the name-to- - number translation table from a compiled pattern. For further details - see the pcreapi documentation. - - -REPETITION - - Repetition is specified by quantifiers, which can follow any of the - following items: - - a literal data character - the . metacharacter - the \C escape sequence - escapes such as \d that match single characters - a character class - a back reference (see next section) - a parenthesized subpattern (unless it is an assertion) - - The general repetition quantifier specifies a minimum and maximum num- - ber of permitted matches, by giving the two numbers in curly brackets - (braces), separated by a comma. The numbers must be less than 65536, - and the first must be less than or equal to the second. For example: - - z{2,4} - - matches "zz", "zzz", or "zzzz". A closing brace on its own is not a - special character. If the second number is omitted, but the comma is - present, there is no upper limit; if the second number and the comma - are both omitted, the quantifier specifies an exact number of required - matches. Thus - - [aeiou]{3,} - - matches at least 3 successive vowels, but may match many more, while - - \d{8} - - matches exactly 8 digits. An opening curly bracket that appears in a - position where a quantifier is not allowed, or one that does not match - the syntax of a quantifier, is taken as a literal character. For exam- - ple, {,6} is not a quantifier, but a literal string of four characters. - - In UTF-8 mode, quantifiers apply to UTF-8 characters rather than to - individual bytes. Thus, for example, \x{100}{2} matches two UTF-8 char- - acters, each of which is represented by a two-byte sequence. - - The quantifier {0} is permitted, causing the expression to behave as if - the previous item and the quantifier were not present. - - For convenience (and historical compatibility) the three most common - quantifiers have single-character abbreviations: - - * is equivalent to {0,} - + is equivalent to {1,} - ? is equivalent to {0,1} - - It is possible to construct infinite loops by following a subpattern - that can match no characters with a quantifier that has no upper limit, - for example: - - (a?)* - - Earlier versions of Perl and PCRE used to give an error at compile time - for such patterns. However, because there are cases where this can be - useful, such patterns are now accepted, but if any repetition of the - subpattern does in fact match no characters, the loop is forcibly bro- - ken. - - By default, the quantifiers are "greedy", that is, they match as much - as possible (up to the maximum number of permitted times), without - causing the rest of the pattern to fail. The classic example of where - this gives problems is in trying to match comments in C programs. These - appear between the sequences /* and */ and within the sequence, indi- - vidual * and / characters may appear. An attempt to match C comments by - applying the pattern - - /\*.*\*/ - - to the string - - /* first command */ not comment /* second comment */ - - fails, because it matches the entire string owing to the greediness of - the .* item. - - However, if a quantifier is followed by a question mark, it ceases to - be greedy, and instead matches the minimum number of times possible, so - the pattern - - /\*.*?\*/ - - does the right thing with the C comments. The meaning of the various - quantifiers is not otherwise changed, just the preferred number of - matches. Do not confuse this use of question mark with its use as a - quantifier in its own right. Because it has two uses, it can sometimes - appear doubled, as in - - \d??\d - - which matches one digit by preference, but can match two if that is the - only way the rest of the pattern matches. - - If the PCRE_UNGREEDY option is set (an option which is not available in - Perl), the quantifiers are not greedy by default, but individual ones - can be made greedy by following them with a question mark. In other - words, it inverts the default behaviour. - - When a parenthesized subpattern is quantified with a minimum repeat - count that is greater than 1 or with a limited maximum, more store is - required for the compiled pattern, in proportion to the size of the - minimum or maximum. - - If a pattern starts with .* or .{0,} and the PCRE_DOTALL option (equiv- - alent to Perl's /s) is set, thus allowing the . to match newlines, the - pattern is implicitly anchored, because whatever follows will be tried - against every character position in the subject string, so there is no - point in retrying the overall match at any position after the first. - PCRE normally treats such a pattern as though it were preceded by \A. - - In cases where it is known that the subject string contains no new- - lines, it is worth setting PCRE_DOTALL in order to obtain this opti- - mization, or alternatively using ^ to indicate anchoring explicitly. - - However, there is one situation where the optimization cannot be used. - When .* is inside capturing parentheses that are the subject of a - backreference elsewhere in the pattern, a match at the start may fail, - and a later one succeed. Consider, for example: - - (.*)abc\1 - - If the subject is "xyz123abc123" the match point is the fourth charac- - ter. For this reason, such a pattern is not implicitly anchored. - - When a capturing subpattern is repeated, the value captured is the sub- - string that matched the final iteration. For example, after - - (tweedle[dume]{3}\s*)+ - - has matched "tweedledum tweedledee" the value of the captured substring - is "tweedledee". However, if there are nested capturing subpatterns, - the corresponding captured values may have been set in previous itera- - tions. For example, after - - /(a|(b))+/ - - matches "aba" the value of the second captured substring is "b". - - -ATOMIC GROUPING AND POSSESSIVE QUANTIFIERS - - With both maximizing and minimizing repetition, failure of what follows - normally causes the repeated item to be re-evaluated to see if a dif- - ferent number of repeats allows the rest of the pattern to match. Some- - times it is useful to prevent this, either to change the nature of the - match, or to cause it fail earlier than it otherwise might, when the - author of the pattern knows there is no point in carrying on. - - Consider, for example, the pattern \d+foo when applied to the subject - line - - 123456bar - - After matching all 6 digits and then failing to match "foo", the normal - action of the matcher is to try again with only 5 digits matching the - \d+ item, and then with 4, and so on, before ultimately failing. - "Atomic grouping" (a term taken from Jeffrey Friedl's book) provides - the means for specifying that once a subpattern has matched, it is not - to be re-evaluated in this way. - - If we use atomic grouping for the previous example, the matcher would - give up immediately on failing to match "foo" the first time. The nota- - tion is a kind of special parenthesis, starting with (?> as in this - example: - - (?>\d+)foo - - This kind of parenthesis "locks up" the part of the pattern it con- - tains once it has matched, and a failure further into the pattern is - prevented from backtracking into it. Backtracking past it to previous - items, however, works as normal. - - An alternative description is that a subpattern of this type matches - the string of characters that an identical standalone pattern would - match, if anchored at the current point in the subject string. - - Atomic grouping subpatterns are not capturing subpatterns. Simple cases - such as the above example can be thought of as a maximizing repeat that - must swallow everything it can. So, while both \d+ and \d+? are pre- - pared to adjust the number of digits they match in order to make the - rest of the pattern match, (?>\d+) can only match an entire sequence of - digits. - - Atomic groups in general can of course contain arbitrarily complicated - subpatterns, and can be nested. However, when the subpattern for an - atomic group is just a single repeated item, as in the example above, a - simpler notation, called a "possessive quantifier" can be used. This - consists of an additional + character following a quantifier. Using - this notation, the previous example can be rewritten as - - \d++bar - - Possessive quantifiers are always greedy; the setting of the - PCRE_UNGREEDY option is ignored. They are a convenient notation for the - simpler forms of atomic group. However, there is no difference in the - meaning or processing of a possessive quantifier and the equivalent - atomic group. - - The possessive quantifier syntax is an extension to the Perl syntax. It - originates in Sun's Java package. - - When a pattern contains an unlimited repeat inside a subpattern that - can itself be repeated an unlimited number of times, the use of an - atomic group is the only way to avoid some failing matches taking a - very long time indeed. The pattern - - (\D+|<\d+>)*[!?] - - matches an unlimited number of substrings that either consist of non- - digits, or digits enclosed in <>, followed by either ! or ?. When it - matches, it runs quickly. However, if it is applied to - - aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa - - it takes a long time before reporting failure. This is because the - string can be divided between the two repeats in a large number of - ways, and all have to be tried. (The example used [!?] rather than a - single character at the end, because both PCRE and Perl have an opti- - mization that allows for fast failure when a single character is used. - They remember the last single character that is required for a match, - and fail early if it is not present in the string.) If the pattern is - changed to - - ((?>\D+)|<\d+>)*[!?] - - sequences of non-digits cannot be broken, and failure happens quickly. - - -BACK REFERENCES - - Outside a character class, a backslash followed by a digit greater than - 0 (and possibly further digits) is a back reference to a capturing sub- - pattern earlier (that is, to its left) in the pattern, provided there - have been that many previous capturing left parentheses. - - However, if the decimal number following the backslash is less than 10, - it is always taken as a back reference, and causes an error only if - there are not that many capturing left parentheses in the entire pat- - tern. In other words, the parentheses that are referenced need not be - to the left of the reference for numbers less than 10. See the section - entitled "Backslash" above for further details of the handling of dig- - its following a backslash. - - A back reference matches whatever actually matched the capturing sub- - pattern in the current subject string, rather than anything matching - the subpattern itself (see "Subpatterns as subroutines" below for a way - of doing that). So the pattern - - (sens|respons)e and \1ibility - - matches "sense and sensibility" and "response and responsibility", but - not "sense and responsibility". If caseful matching is in force at the - time of the back reference, the case of letters is relevant. For exam- - ple, - - ((?i)rah)\s+\1 - - matches "rah rah" and "RAH RAH", but not "RAH rah", even though the - original capturing subpattern is matched caselessly. - - Back references to named subpatterns use the Python syntax (?P=name). - We could rewrite the above example as follows: - - (?(?i)rah)\s+(?P=p1) - - There may be more than one back reference to the same subpattern. If a - subpattern has not actually been used in a particular match, any back - references to it always fail. For example, the pattern - - (a|(bc))\2 - - always fails if it starts to match "a" rather than "bc". Because there - may be many capturing parentheses in a pattern, all digits following - the backslash are taken as part of a potential back reference number. - If the pattern continues with a digit character, some delimiter must be - used to terminate the back reference. If the PCRE_EXTENDED option is - set, this can be whitespace. Otherwise an empty comment can be used. - - A back reference that occurs inside the parentheses to which it refers - fails when the subpattern is first used, so, for example, (a\1) never - matches. However, such references can be useful inside repeated sub- - patterns. For example, the pattern - - (a|b\1)+ - - matches any number of "a"s and also "aba", "ababbaa" etc. At each iter- - ation of the subpattern, the back reference matches the character - string corresponding to the previous iteration. In order for this to - work, the pattern must be such that the first iteration does not need - to match the back reference. This can be done using alternation, as in - the example above, or by a quantifier with a minimum of zero. - - -ASSERTIONS - - An assertion is a test on the characters following or preceding the - current matching point that does not actually consume any characters. - The simple assertions coded as \b, \B, \A, \G, \Z, \z, ^ and $ are - described above. More complicated assertions are coded as subpatterns. - There are two kinds: those that look ahead of the current position in - the subject string, and those that look behind it. - - An assertion subpattern is matched in the normal way, except that it - does not cause the current matching position to be changed. Lookahead - assertions start with (?= for positive assertions and (?! for negative - assertions. For example, - - \w+(?=;) - - matches a word followed by a semicolon, but does not include the semi- - colon in the match, and - - foo(?!bar) - - matches any occurrence of "foo" that is not followed by "bar". Note - that the apparently similar pattern - - (?!foo)bar - - does not find an occurrence of "bar" that is preceded by something - other than "foo"; it finds any occurrence of "bar" whatsoever, because - the assertion (?!foo) is always true when the next three characters are - "bar". A lookbehind assertion is needed to achieve this effect. - - If you want to force a matching failure at some point in a pattern, the - most convenient way to do it is with (?!) because an empty string - always matches, so an assertion that requires there not to be an empty - string must always fail. - - Lookbehind assertions start with (?<= for positive assertions and (?.*)(?<=abcd) - - or, equivalently, - - ^.*+(?<=abcd) - - there can be no backtracking for the .* item; it can match only the - entire string. The subsequent lookbehind assertion does a single test - on the last four characters. If it fails, the match fails immediately. - For long strings, this approach makes a significant difference to the - processing time. - - Several assertions (of any sort) may occur in succession. For example, - - (?<=\d{3})(?[^()]+) | (?p{$re}) )* \)}x; - - The (?p{...}) item interpolates Perl code at run time, and in this case - refers recursively to the pattern in which it appears. Obviously, PCRE - cannot support the interpolation of Perl code. Instead, it supports - some special syntax for recursion of the entire pattern, and also for - individual subpattern recursion. - - The special item that consists of (? followed by a number greater than - zero and a closing parenthesis is a recursive call of the subpattern of - the given number, provided that it occurs inside that subpattern. (If - not, it is a "subroutine" call, which is described in the next sec- - tion.) The special item (?R) is a recursive call of the entire regular - expression. - - For example, this PCRE pattern solves the nested parentheses problem - (assume the PCRE_EXTENDED option is set so that white space is - ignored): - - \( ( (?>[^()]+) | (?R) )* \) - - First it matches an opening parenthesis. Then it matches any number of - substrings which can either be a sequence of non-parentheses, or a - recursive match of the pattern itself (that is a correctly parenthe- - sized substring). Finally there is a closing parenthesis. - - If this were part of a larger pattern, you would not want to recurse - the entire pattern, so instead you could use this: - - ( \( ( (?>[^()]+) | (?1) )* \) ) - - We have put the pattern into parentheses, and caused the recursion to - refer to them instead of the whole pattern. In a larger pattern, keep- - ing track of parenthesis numbers can be tricky. It may be more conve- - nient to use named parentheses instead. For this, PCRE uses (?P>name), - which is an extension to the Python syntax that PCRE uses for named - parentheses (Perl does not provide named parentheses). We could rewrite - the above example as follows: - - (?P \( ( (?>[^()]+) | (?P>pn) )* \) ) - - This particular example pattern contains nested unlimited repeats, and - so the use of atomic grouping for matching strings of non-parentheses - is important when applying the pattern to strings that do not match. - For example, when this pattern is applied to - - (aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa() - - it yields "no match" quickly. However, if atomic grouping is not used, - the match runs for a very long time indeed because there are so many - different ways the + and * repeats can carve up the subject, and all - have to be tested before failure can be reported. - - At the end of a match, the values set for any capturing subpatterns are - those from the outermost level of the recursion at which the subpattern - value is set. If you want to obtain intermediate values, a callout - function can be used (see below and the pcrecallout documentation). If - the pattern above is matched against - - (ab(cd)ef) - - the value for the capturing parentheses is "ef", which is the last - value taken on at the top level. If additional parentheses are added, - giving - - \( ( ( (?>[^()]+) | (?R) )* ) \) - ^ ^ - ^ ^ - - the string they capture is "ab(cd)ef", the contents of the top level - parentheses. If there are more than 15 capturing parentheses in a pat- - tern, PCRE has to obtain extra memory to store data during a recursion, - which it does by using pcre_malloc, freeing it via pcre_free after- - wards. If no memory can be obtained, the match fails with the - PCRE_ERROR_NOMEMORY error. - - Do not confuse the (?R) item with the condition (R), which tests for - recursion. Consider this pattern, which matches text in angle brack- - ets, allowing for arbitrary nesting. Only digits are allowed in nested - brackets (that is, when recursing), whereas any characters are permit- - ted at the outer level. - - < (?: (?(R) \d++ | [^<>]*+) | (?R)) * > - - In this pattern, (?(R) is the start of a conditional subpattern, with - two different alternatives for the recursive and non-recursive cases. - The (?R) item is the actual recursive call. - - -SUBPATTERNS AS SUBROUTINES - - If the syntax for a recursive subpattern reference (either by number or - by name) is used outside the parentheses to which it refers, it oper- - ates like a subroutine in a programming language. An earlier example - pointed out that the pattern - - (sens|respons)e and \1ibility - - matches "sense and sensibility" and "response and responsibility", but - not "sense and responsibility". If instead the pattern - - (sens|respons)e and (?1)ibility - - is used, it does match "sense and responsibility" as well as the other - two strings. Such references must, however, follow the subpattern to - which they refer. - - -CALLOUTS - - Perl has a feature whereby using the sequence (?{...}) causes arbitrary - Perl code to be obeyed in the middle of matching a regular expression. - This makes it possible, amongst other things, to extract different sub- - strings that match the same pair of parentheses when there is a repeti- - tion. - - PCRE provides a similar feature, but of course it cannot obey arbitrary - Perl code. The feature is called "callout". The caller of PCRE provides - an external function by putting its entry point in the global variable - pcre_callout. By default, this variable contains NULL, which disables - all calling out. - - Within a regular expression, (?C) indicates the points at which the - external function is to be called. If you want to identify different - callout points, you can put a number less than 256 after the letter C. - The default value is zero. For example, this pattern has two callout - points: - - (?C1)abc(?C2)def - - During matching, when PCRE reaches a callout point (and pcre_callout is - set), the external function is called. It is provided with the number - of the callout, and, optionally, one item of data originally supplied - by the caller of pcre_exec(). The callout function may cause matching - to backtrack, or to fail altogether. A complete description of the - interface to the callout function is given in the pcrecallout documen- - tation. - -Last updated: 03 February 2003 -Copyright (c) 1997-2003 University of Cambridge. ------------------------------------------------------------------------------ - -PCRE(3) PCRE(3) - - - -NAME - PCRE - Perl-compatible regular expressions - -PCRE PERFORMANCE - - Certain items that may appear in regular expression patterns are more - efficient than others. It is more efficient to use a character class - like [aeiou] than a set of alternatives such as (a|e|i|o|u). In gen- - eral, the simplest construction that provides the required behaviour is - usually the most efficient. Jeffrey Friedl's book contains a lot of - discussion about optimizing regular expressions for efficient perfor- - mance. - - When a pattern begins with .* not in parentheses, or in parentheses - that are not the subject of a backreference, and the PCRE_DOTALL option - is set, the pattern is implicitly anchored by PCRE, since it can match - only at the start of a subject string. However, if PCRE_DOTALL is not - set, PCRE cannot make this optimization, because the . metacharacter - does not then match a newline, and if the subject string contains new- - lines, the pattern may match from the character immediately following - one of them instead of from the very start. For example, the pattern - - .*second - - matches the subject "first\nand second" (where \n stands for a newline - character), with the match starting at the seventh character. In order - to do this, PCRE has to retry the match starting after every newline in - the subject. - - If you are using such a pattern with subject strings that do not con- - tain newlines, the best performance is obtained by setting PCRE_DOTALL, - or starting the pattern with ^.* to indicate explicit anchoring. That - saves PCRE from having to scan along the subject looking for a newline - to restart at. - - Beware of patterns that contain nested indefinite repeats. These can - take a long time to run when applied to a string that does not match. - Consider the pattern fragment - - (a+)* - - This can match "aaaa" in 33 different ways, and this number increases - very rapidly as the string gets longer. (The * repeat can match 0, 1, - 2, 3, or 4 times, and for each of those cases other than 0, the + - repeats can match different numbers of times.) When the remainder of - the pattern is such that the entire match is going to fail, PCRE has in - principle to try every possible variation, and this can take an - extremely long time. - - An optimization catches some of the more simple cases such as - - (a+)*b - - where a literal character follows. Before embarking on the standard - matching procedure, PCRE checks that there is a "b" later in the sub- - ject string, and if there is not, it fails the match immediately. How- - ever, when there is no following literal this optimization cannot be - used. You can see the difference by comparing the behaviour of - - (a+)*\d - - with the pattern above. The former gives a failure almost instantly - when applied to a whole line of "a" characters, whereas the latter - takes an appreciable time with strings longer than about 20 characters. - -Last updated: 03 February 2003 -Copyright (c) 1997-2003 University of Cambridge. ------------------------------------------------------------------------------ - -PCRE(3) PCRE(3) - - - -NAME - PCRE - Perl-compatible regular expressions. - -SYNOPSIS OF POSIX API - #include - - int regcomp(regex_t *preg, const char *pattern, - int cflags); - - int regexec(regex_t *preg, const char *string, - size_t nmatch, regmatch_t pmatch[], int eflags); - - size_t regerror(int errcode, const regex_t *preg, - char *errbuf, size_t errbuf_size); - - void regfree(regex_t *preg); - - -DESCRIPTION - - This set of functions provides a POSIX-style API to the PCRE regular - expression package. See the pcreapi documentation for a description of - the native API, which contains additional functionality. - - The functions described here are just wrapper functions that ultimately - call the PCRE native API. Their prototypes are defined in the - pcreposix.h header file, and on Unix systems the library itself is - called pcreposix.a, so can be accessed by adding -lpcreposix to the - command for linking an application which uses them. Because the POSIX - functions call the native ones, it is also necessary to add -lpcre. - - I have implemented only those option bits that can be reasonably mapped - to PCRE native options. In addition, the options REG_EXTENDED and - REG_NOSUB are defined with the value zero. They have no effect, but - since programs that are written to the POSIX interface often use them, - this makes it easier to slot in PCRE as a replacement library. Other - POSIX options are not even defined. - - When PCRE is called via these functions, it is only the API that is - POSIX-like in style. The syntax and semantics of the regular expres- - sions themselves are still those of Perl, subject to the setting of - various PCRE options, as described below. "POSIX-like in style" means - that the API approximates to the POSIX definition; it is not fully - POSIX-compatible, and in multi-byte encoding domains it is probably - even less compatible. - - The header for these functions is supplied as pcreposix.h to avoid any - potential clash with other POSIX libraries. It can, of course, be - renamed or aliased as regex.h, which is the "correct" name. It provides - two structure types, regex_t for compiled internal forms, and reg- - match_t for returning captured substrings. It also defines some con- - stants whose names start with "REG_"; these are used for setting - options and identifying error codes. - - -COMPILING A PATTERN - - The function regcomp() is called to compile a pattern into an internal - form. The pattern is a C string terminated by a binary zero, and is - passed in the argument pattern. The preg argument is a pointer to a - regex_t structure which is used as a base for storing information about - the compiled expression. - - The argument cflags is either zero, or contains one or more of the bits - defined by the following macros: - - REG_ICASE - - The PCRE_CASELESS option is set when the expression is passed for com- - pilation to the native function. - - REG_NEWLINE - - The PCRE_MULTILINE option is set when the expression is passed for com- - pilation to the native function. Note that this does not mimic the - defined POSIX behaviour for REG_NEWLINE (see the following section). - - In the absence of these flags, no options are passed to the native - function. This means the the regex is compiled with PCRE default - semantics. In particular, the way it handles newline characters in the - subject string is the Perl way, not the POSIX way. Note that setting - PCRE_MULTILINE has only some of the effects specified for REG_NEWLINE. - It does not affect the way newlines are matched by . (they aren't) or - by a negative class such as [^a] (they are). - - The yield of regcomp() is zero on success, and non-zero otherwise. The - preg structure is filled in on success, and one member of the structure - is public: re_nsub contains the number of capturing subpatterns in the - regular expression. Various error codes are defined in the header file. - - -MATCHING NEWLINE CHARACTERS - - This area is not simple, because POSIX and Perl take different views of - things. It is not possible to get PCRE to obey POSIX semantics, but - then PCRE was never intended to be a POSIX engine. The following table - lists the different possibilities for matching newline characters in - PCRE: - - Default Change with - - . matches newline no PCRE_DOTALL - newline matches [^a] yes not changeable - $ matches \n at end yes PCRE_DOLLARENDONLY - $ matches \n in middle no PCRE_MULTILINE - ^ matches \n in middle no PCRE_MULTILINE - - This is the equivalent table for POSIX: - - Default Change with - - . matches newline yes REG_NEWLINE - newline matches [^a] yes REG_NEWLINE - $ matches \n at end no REG_NEWLINE - $ matches \n in middle no REG_NEWLINE - ^ matches \n in middle no REG_NEWLINE - - PCRE's behaviour is the same as Perl's, except that there is no equiva- - lent for PCRE_DOLLARENDONLY in Perl. In both PCRE and Perl, there is no - way to stop newline from matching [^a]. - - The default POSIX newline handling can be obtained by setting - PCRE_DOTALL and PCRE_DOLLARENDONLY, but there is no way to make PCRE - behave exactly as for the REG_NEWLINE action. - - -MATCHING A PATTERN - - The function regexec() is called to match a pre-compiled pattern preg - against a given string, which is terminated by a zero byte, subject to - the options in eflags. These can be: - - REG_NOTBOL - - The PCRE_NOTBOL option is set when calling the underlying PCRE matching - function. - - REG_NOTEOL - - The PCRE_NOTEOL option is set when calling the underlying PCRE matching - function. - - The portion of the string that was matched, and also any captured sub- - strings, are returned via the pmatch argument, which points to an array - of nmatch structures of type regmatch_t, containing the members rm_so - and rm_eo. These contain the offset to the first character of each sub- - string and the offset to the first character after the end of each sub- - string, respectively. The 0th element of the vector relates to the - entire portion of string that was matched; subsequent elements relate - to the capturing subpatterns of the regular expression. Unused entries - in the array have both structure members set to -1. - - A successful match yields a zero return; various error codes are - defined in the header file, of which REG_NOMATCH is the "expected" - failure code. - - -ERROR MESSAGES - - The regerror() function maps a non-zero errorcode from either regcomp() - or regexec() to a printable message. If preg is not NULL, the error - should have arisen from the use of that structure. A message terminated - by a binary zero is placed in errbuf. The length of the message, - including the zero, is limited to errbuf_size. The yield of the func- - tion is the size of buffer needed to hold the whole message. - - -STORAGE - - Compiling a regular expression causes memory to be allocated and asso- - ciated with the preg structure. The function regfree() frees all such - memory, after which preg may no longer be used as a compiled expres- - sion. - - -AUTHOR - - Philip Hazel - University Computing Service, - Cambridge CB2 3QG, England. - -Last updated: 03 February 2003 -Copyright (c) 1997-2003 University of Cambridge. ------------------------------------------------------------------------------ - -PCRE(3) PCRE(3) - - - -NAME - PCRE - Perl-compatible regular expressions - -PCRE SAMPLE PROGRAM - - A simple, complete demonstration program, to get you started with using - PCRE, is supplied in the file pcredemo.c in the PCRE distribution. - - The program compiles the regular expression that is its first argument, - and matches it against the subject string in its second argument. No - PCRE options are set, and default character tables are used. If match- - ing succeeds, the program outputs the portion of the subject that - matched, together with the contents of any captured substrings. - - If the -g option is given on the command line, the program then goes on - to check for further matches of the same regular expression in the same - subject string. The logic is a little bit tricky because of the possi- - bility of matching an empty string. Comments in the code explain what - is going on. - - On a Unix system that has PCRE installed in /usr/local, you can compile - the demonstration program using a command like this: - - gcc -o pcredemo pcredemo.c -I/usr/local/include \ - -L/usr/local/lib -lpcre - - Then you can run simple tests like this: - - ./pcredemo 'cat|dog' 'the cat sat on the mat' - ./pcredemo -g 'cat|dog' 'the dog sat on the cat' - - Note that there is a much more comprehensive test program, called - pcretest, which supports many more facilities for testing regular - expressions and the PCRE library. The pcredemo program is provided as a - simple coding example. - - On some operating systems (e.g. Solaris) you may get an error like this - when you try to run pcredemo: - - ld.so.1: a.out: fatal: libpcre.so.0: open failed: No such file or - directory - - This is caused by the way shared library support works on those sys- - tems. You need to add - - -R/usr/local/lib - - to the compile command to get round this problem. - -Last updated: 28 January 2003 -Copyright (c) 1997-2003 University of Cambridge. ------------------------------------------------------------------------------ - -- cgit v1.2.3-70-g09d2