#include #include #include #include #include #include #include #include #include Pl_AES_PDF::Pl_AES_PDF(char const* identifier, Pipeline* next, bool encrypt, unsigned char key[key_size]) : Pipeline(identifier, next), encrypt(encrypt), cbc_mode(true), first(true), offset(0), nrounds(0) { static int const keybits = 128; assert(key_size == KEYLENGTH(keybits)); assert(sizeof(this->rk) / sizeof(uint32_t) == RKLENGTH(keybits)); std::memcpy(this->key, key, key_size); std::memset(this->rk, 0, sizeof(this->rk)); std::memset(this->inbuf, 0, this->buf_size); std::memset(this->outbuf, 0, this->buf_size); std::memset(this->cbc_block, 0, this->buf_size); if (encrypt) { this->nrounds = rijndaelSetupEncrypt(this->rk, this->key, keybits); } else { this->nrounds = rijndaelSetupDecrypt(this->rk, this->key, keybits); } assert(this->nrounds == NROUNDS(keybits)); } Pl_AES_PDF::~Pl_AES_PDF() { // nothing needed } void Pl_AES_PDF::disableCBC() { this->cbc_mode = false; } void Pl_AES_PDF::write(unsigned char* data, int len) { unsigned int bytes_left = len; unsigned char* p = data; while (bytes_left > 0) { if (this->offset == this->buf_size) { flush(false); } unsigned int available = this->buf_size - this->offset; int bytes = (bytes_left < available ? bytes_left : available); bytes_left -= bytes; std::memcpy(this->inbuf + this->offset, p, bytes); this->offset += bytes; p += bytes; } } void Pl_AES_PDF::finish() { if (this->encrypt) { if (this->offset == this->buf_size) { flush(false); } // Pad as described in section 3.5.1 of version 1.7 of the PDF // specification, including providing an entire block of padding // if the input was a multiple of 16 bytes. unsigned char pad = this->buf_size - this->offset; memset(this->inbuf + this->offset, pad, pad); this->offset = this->buf_size; flush(false); } else { if (this->offset != this->buf_size) { throw std::runtime_error( "aes encrypted stream length was not a multiple of " + QUtil::int_to_string(this->buf_size) + " bytes (offset = " + QUtil::int_to_string(this->offset) + ")"); } flush(true); } getNext()->finish(); } void Pl_AES_PDF::initializeVector() { std::string seed_str; seed_str += QUtil::int_to_string((int)QUtil::get_current_time()); seed_str += " QPDF aes random"; MD5 m; m.encodeString(seed_str.c_str()); MD5::Digest digest; m.digest(digest); assert(sizeof(digest) >= sizeof(unsigned int)); unsigned int seed; memcpy((void*)(&seed), digest, sizeof(unsigned int)); srandom(seed); for (unsigned int i = 0; i < this->buf_size; ++i) { this->cbc_block[i] = (unsigned char)(random() & 0xff); } } void Pl_AES_PDF::flush(bool strip_padding) { assert(this->offset == this->buf_size); if (first) { first = false; if (this->cbc_mode) { if (encrypt) { // Set cbc_block to a random initialization vector and // write it to the output stream initializeVector(); getNext()->write(this->cbc_block, this->buf_size); } else { // Take the first block of input as the initialization // vector. There's nothing to write at this time. memcpy(this->cbc_block, this->inbuf, this->buf_size); this->offset = 0; return; } } } if (this->encrypt) { if (this->cbc_mode) { for (unsigned int i = 0; i < this->buf_size; ++i) { this->inbuf[i] ^= this->cbc_block[i]; } } rijndaelEncrypt(this->rk, this->nrounds, this->inbuf, this->outbuf); if (this->cbc_mode) { memcpy(this->cbc_block, this->outbuf, this->buf_size); } } else { rijndaelDecrypt(this->rk, this->nrounds, this->inbuf, this->outbuf); if (this->cbc_mode) { for (unsigned int i = 0; i < this->buf_size; ++i) { this->outbuf[i] ^= this->cbc_block[i]; } memcpy(this->cbc_block, this->inbuf, this->buf_size); } } unsigned int bytes = this->buf_size; if (strip_padding) { unsigned char last = this->outbuf[this->buf_size - 1]; if (last <= this->buf_size) { bool strip = true; for (unsigned int i = 1; i <= last; ++i) { if (this->outbuf[this->buf_size - i] != last) { strip = false; break; } } if (strip) { bytes -= last; } } } getNext()->write(this->outbuf, bytes); this->offset = 0; }