summaryrefslogtreecommitdiffstats
path: root/pages/measure-and-integration/measure-theory
diff options
context:
space:
mode:
Diffstat (limited to 'pages/measure-and-integration/measure-theory')
-rw-r--r--pages/measure-and-integration/measure-theory/borels-sets.md33
-rw-r--r--pages/measure-and-integration/measure-theory/index.md9
-rw-r--r--pages/measure-and-integration/measure-theory/measurable-maps.md27
-rw-r--r--pages/measure-and-integration/measure-theory/measures.md29
-rw-r--r--pages/measure-and-integration/measure-theory/sigma-algebras.md50
-rw-r--r--pages/measure-and-integration/measure-theory/signed-measures.md33
6 files changed, 181 insertions, 0 deletions
diff --git a/pages/measure-and-integration/measure-theory/borels-sets.md b/pages/measure-and-integration/measure-theory/borels-sets.md
new file mode 100644
index 0000000..737a7c8
--- /dev/null
+++ b/pages/measure-and-integration/measure-theory/borels-sets.md
@@ -0,0 +1,33 @@
+---
+title: Borel Sets
+parent: Measure Theory
+grand_parent: Measure and Integration
+nav_order: 2
+---
+
+# {{ page.title }}
+
+{% definition Borel Sigma-Algebra, Borel Set %}
+The *Borel σ-algebra* $\mathcal{B}(X)$ on a topological space $X$ is
+the σ-algebra generated by its open sets.
+The elements of $\mathcal{B}(X)$ are called *Borel(-measurable) sets*.
+{% enddefinition %}
+
+That is, $\mathcal{B}(X) = \sigma(\mathcal{O})$,
+where $\mathcal{O}$ is the collection of open sets in $X$.
+It is also true that $\mathcal{B}(X) = \sigma(\mathcal{C})$,
+where $\mathcal{C}$ is the collection of closed sets in $X$.
+
+{% definition Borel Function %}
+If $(X,\mathcal{A})$ is a measure space
+and $Y$ is a topological space,
+then a function $f : X \to Y$ is called *measurable*,
+or a *Borel function*,
+if it is measurable with respect to $\mathcal{A}$ and
+the Borel σ-algebra on $Y$.
+{% enddefinition %}
+
+{% definition Borel Measure %}
+A *Borel measure* on a topological space $X$
+is any measure on the Borel σ-algebra of $X$.
+{% enddefinition %}
diff --git a/pages/measure-and-integration/measure-theory/index.md b/pages/measure-and-integration/measure-theory/index.md
new file mode 100644
index 0000000..575c945
--- /dev/null
+++ b/pages/measure-and-integration/measure-theory/index.md
@@ -0,0 +1,9 @@
+---
+title: Measure Theory
+parent: Measure and Integration
+nav_order: 1
+has_children: true
+has_toc: false
+---
+
+# {{ page.title }}
diff --git a/pages/measure-and-integration/measure-theory/measurable-maps.md b/pages/measure-and-integration/measure-theory/measurable-maps.md
new file mode 100644
index 0000000..5b7a76e
--- /dev/null
+++ b/pages/measure-and-integration/measure-theory/measurable-maps.md
@@ -0,0 +1,27 @@
+---
+title: Measurable Maps
+parent: Measure Theory
+grand_parent: Measure and Integration
+nav_order: 3
+---
+
+# {{ page.title }}
+
+{% definition Measurable Map %}
+Suppose $(X,\mathcal{A})$ and $(Y,\mathcal{B})$ are measurable spaces.
+We say that a map $f: X \to Y$ is *measurable* (with respect to $\mathcal{A}$ and $\mathcal{B}$) if
+$f^{-1}(B) \in \mathcal{A}$ for all $B \in \mathcal{B}$.
+{% enddefinition %}
+
+{% proposition %}
+The composition of measurable maps is measurable.
+{% endproposition %}
+
+It is sufficient to check measurability for a generator:
+
+{% proposition %}
+Suppose that $(X,\mathcal{A})$ and $(Y,\mathcal{B})$ are measurable spaces,
+and that $\mathcal{E}$ is a generator of $\mathcal{B}$.
+Then a map $f : X \to Y$ is measurable iff
+$f^{-1}(E) \in \mathcal{A}$ for every $E \in \mathcal{E}$.
+{% endproposition %}
diff --git a/pages/measure-and-integration/measure-theory/measures.md b/pages/measure-and-integration/measure-theory/measures.md
new file mode 100644
index 0000000..637ab0c
--- /dev/null
+++ b/pages/measure-and-integration/measure-theory/measures.md
@@ -0,0 +1,29 @@
+---
+title: Measures
+parent: Measure Theory
+grand_parent: Measure and Integration
+nav_order: 4
+---
+
+# {{ page.title }}
+
+{% definition %}
+A *measure* on a σ-algebra $\mathcal{A}$ on a set $X$
+is mapping $\mu : \mathcal{A} \to [0,\infty]$ such that
+
+- $\mu(\varnothing) = 0$,
+- for every sequence $(A_n)_{n \in \NN}$ of
+ pairwise disjoint sets $A_n \in \mathcal{A}$
+
+ $$
+ \mu \bigg\lparen \bigcup_{n=1}^{\infty} A_n \! \bigg\rparen
+ = \sum_{n=0}^{\infty} \mu(A_n).
+ $$
+{% enddefinition %}
+
+{% definition Measure Space %}
+A *measure space* is a triple $(X,\mathcal{A},\mu)$ of
+a set $X$,
+a σ-algebra $\mathcal{A}$ on $X$
+and a measure $\mu$ on $\mathcal{A}$.
+{% enddefinition %}
diff --git a/pages/measure-and-integration/measure-theory/sigma-algebras.md b/pages/measure-and-integration/measure-theory/sigma-algebras.md
new file mode 100644
index 0000000..5d22f6b
--- /dev/null
+++ b/pages/measure-and-integration/measure-theory/sigma-algebras.md
@@ -0,0 +1,50 @@
+---
+title: σ-Algebras
+parent: Measure Theory
+grand_parent: Measure and Integration
+nav_order: 1
+---
+
+# {{ page.title }}
+
+{% definition Sigma-Algebra, Measurable Space, Measurable Set %}
+A *σ-algebra* on a set $X$ is a collection $\mathcal{A}$ of subsets of $X$ such that
+
+- $X$ belongs to $\mathcal{A}$,
+- if $A \in \mathcal{A}$, then $X \setminus A \in \mathcal{A}$,
+- the union of any countable subcollection of $\mathcal{A}$ belongs to $\mathcal{A}$.
+
+A *measurable space* is a pair $(X,\mathcal{A})$ consisting of
+a set $X$ and a σ-algebra $\mathcal{A}$ on $X$. \
+The subsets of $X$ belonging to $\mathcal{A}$ are called *measurable sets*.
+{% enddefinition %}
+
+{% example %}
+On every set $X$ we have the σ-algebras $\braces{\varnothing,X}$ and $\mathcal{P}(X)$.
+{% endexample %}
+
+{% proposition %}
+If $\mathcal{A}$ is *σ-algebra* on a set $X$, then:
+
+- $\varnothing$ belongs to $\mathcal{A}$,
+- if $A,B \in \mathcal{A}$, then $B \setminus A \in \mathcal{A}$,
+- the intersection of any countable subcollection of $\mathcal{A}$ belongs to $\mathcal{A}$.
+{% endproposition %}
+
+## Generated {{ page.title }}
+
+{% proposition Intersection of σ-Algebras %}
+If $\braces{\mathcal{A}_i}$ is a family of σ-algebras on a set $X$,
+then $\bigcap_i \mathcal{A}_i$ is a σ-algebra on $X$.
+{% endproposition %}
+
+{% definition Generated σ-Algebras %}
+Suppose $\mathcal{E}$ is any collection of subsets of a set $X$.
+The *σ-algebra generated by $\mathcal{E}$*, denoted by $\sigma(\mathcal{E})$, is
+defined to be the intersection of all σ-algebras on $X$ containing $\mathcal{A}$.
+{% enddefinition %}
+
+By the previous proposition, $\sigma(\mathcal{E})$ is in fact a σ-algebra on $X$.
+
+## Products of {{ page.title }}
+
diff --git a/pages/measure-and-integration/measure-theory/signed-measures.md b/pages/measure-and-integration/measure-theory/signed-measures.md
new file mode 100644
index 0000000..77b2416
--- /dev/null
+++ b/pages/measure-and-integration/measure-theory/signed-measures.md
@@ -0,0 +1,33 @@
+---
+title: Signed Measures
+parent: Measure Theory
+grand_parent: Measure and Integration
+nav_order: 10
+---
+
+# {{ page.title }}
+
+{% definition Signed Measure %}
+A *signed measure* on a σ-algebra $\mathcal{A}$ on a set $X$
+is a mapping $\mu : \mathcal{A} \to [-\infty,\infty]$ such that
+{: .mb-0 }
+
+- $\mu(\varnothing) = 0$,
+- either there is no $A \in \mathcal{A}$ with $\mu(A) = -\infty$
+ or there is no $A \in \mathcal{A}$ with $\mu(A) = \infty$,
+- for every sequence $(A_n)_{n \in \NN}$ of
+ pairwise disjoint sets $A_n \in \mathcal{A}$
+ {: .my-0 }
+
+ $$
+ \mu \bigg\lparen \bigcup_{n=1}^{\infty} A_n \! \bigg\rparen
+ = \sum_{n=0}^{\infty} \mu(A_n).
+ $$
+{% enddefinition %}
+
+{% definition Measure Space %}
+A *measure space* is a triple $(X,\mathcal{A},\mu)$ of
+a set $X$,
+a σ-algebra $\mathcal{A}$ on $X$
+and a measure $\mu$ on $\mathcal{A}$.
+{% enddefinition %}