From 777f9d3fd8caf56e6bc6999a4b05379307d0733f Mon Sep 17 00:00:00 2001 From: Justin Gassner Date: Tue, 12 Sep 2023 07:36:33 +0200 Subject: Initial commit --- .../cauchys-integral-formula.md | 102 +++++++++++++++++++++ 1 file changed, 102 insertions(+) create mode 100644 pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md (limited to 'pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md') diff --git a/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md b/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md new file mode 100644 index 0000000..ccdd0ea --- /dev/null +++ b/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md @@ -0,0 +1,102 @@ +--- +title: Cauchy's Integral Formula +parent: One Complex Variable +grand_parent: Complex Analysis +nav_order: 3 +# cspell:words +--- + +# {{ page.title }} + +{: .theorem-title } +> {{ page.title }} +> +> Let $f : G \to \CC$ be a function holomorphic in an open subset $G \subset \CC$. +> Let $\gamma$ be a contour in $G$ such that the interior of $\gamma$ is contained in $G$. +> Then for any point $a$ in the interior of $\gamma$, +> +> $$ +> f(a) = \frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} \, dz. +> $$ +> {: .katex-display .mb-0 } + +{% proof %} +{% endproof %} + +{: .theorem-title } +> {{ page.title }} (Generalization) +> {: #cauchys-integral-formula-generalized } +> +> Let $f : G \to \CC$ be a function holomorphic in an open subset $G \subset \CC$. +> Then the $n$th derivative $f^{(n)}$ exists for every $n \in \NN$. +> If $\gamma$ is a contour in $G$ such that the interior of $\gamma$ is contained in $G$, +> then for any point $a$ in the interior of $\gamma$, +> +> $$ +> f^{(n)} (a) = \frac{n!}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} \, dz. +> $$ +> {: .katex-display .mb-0 } + +{% proof %} +{% endproof %} + +The last formula may be rewritten as + +$$ +\int_{\gamma} \frac{f(z)}{(z-a)^n} \, dz = \frac{2 \pi i}{(n-1)!} f^{(n-1)}(a) +$$ + +and is often used to compute the integral. + +## Many Consequences + +{: .theorem-title } +> Cauchy's Estimate +> {: #cauchys-estimate } +> +> Let $f$ be holomorphic on an open set containing the disc with center $a$ and radius $r>0$. +> Then +> +> $$ +> \norm{f^{(n)}(a)} \le \frac{n!}{r^n} \sup_{\abs{z-a} = r} \norm{f(z)} \qquad \forall n \in \NN. +> $$ +> {: .katex-display .mb-0 } + +{% proof %} +From [{{ page.title }}](#cauchys-integral-formula-generalized) +for the circular contour around $a$ with radius $r$ we obtain + +$$ +\begin{aligned} +\norm{f^{(n)}(a)} &\le \frac{n!}{2\pi} \sup_{\abs{z-a} = r} \norm{f(z)} \, \int_{\abs{z-a} = r} \frac{dz}{\abs{z-a}^{n+1}}. +\end{aligned} +$$ + +Note that the supremum is finite (and is attained), +because $f$ is continuous and the circle is compact. +Clearly, the integral evaluates to $2 \pi r / r^{n+1}$ +and the right hand side of the inequality reduces to the desired expression. +{% endproof %} + +--- + +Recall that an *entire* function is a holomorphic function that is defined everywhere in the complex plane. + +{: .theorem-title } +> Liouville's Theorem +> {: #liouvilles-theorem } +> +> Every bounded entire function is constant. + +{% proof %} +Consider an entire function $f$ and assume that $\norm{f(z)} \le M$ for all $z \in \CC$ and some $M > 0$. +Since $f$ is holomorphic on the whole plane, we may make +[Cauchy's Estimate](#cauchys-estimate) +for all disks centered at any point $a \in \CC$ and with any radius $r>0$. +For the first derivative, we have $\norm{f'(a)} \le M/r$, which tends to $0$ for $r \to \infty$. +Hence $f' = 0$ in the whole plane. This +[implies](/pages/complex-analysis/one-complex-variable/basics.html#holomorphic-function-is-constant-if-derivative-vanishes) +that $f$ is constant. +{% endproof %} + +--- -- cgit v1.2.3-54-g00ecf