From 777f9d3fd8caf56e6bc6999a4b05379307d0733f Mon Sep 17 00:00:00 2001 From: Justin Gassner Date: Tue, 12 Sep 2023 07:36:33 +0200 Subject: Initial commit --- .../one-complex-variable/power-series.md | 62 ++++++++++++++++++++++ 1 file changed, 62 insertions(+) create mode 100644 pages/complex-analysis/one-complex-variable/power-series.md (limited to 'pages/complex-analysis/one-complex-variable/power-series.md') diff --git a/pages/complex-analysis/one-complex-variable/power-series.md b/pages/complex-analysis/one-complex-variable/power-series.md new file mode 100644 index 0000000..0147f31 --- /dev/null +++ b/pages/complex-analysis/one-complex-variable/power-series.md @@ -0,0 +1,62 @@ +--- +title: Power Series +parent: One Complex Variable +grand_parent: Complex Analysis +nav_order: 1 +# cspell:words +--- + +# {{ page.title }} + +{: .definition-title } +> Definition ({{ page.title }}) +> +> Let $X$ be a complex Banach space. +> A *power series* (with values in $X$) is an infinite series of the form +> +> +> $$ +> \sum_{n=0}^{\infty} x_n (z - a)^n = x_0 + x_1 (z-a) + x_2 (z-a)^2 + \cdots, +> $$ +> +> where $x_n \in X$ is the *$n$th coefficient*, +> $z$ is a complex variable and +> $a$ is the *center* of the series. + +{: .lemma } +> Suppose the Banach space valued power series $\sum_{n=0}^{\infty} x_n (z - a)^n$ converges for $z = a + w$. +> Then it converges absolutely for all $z$ with $\abs{z-a} < \abs{w}$. + +{% proof %} +TODO +{% endproof %} + +{: .theorem } +> Suppose $\sum_{n=0}^{\infty} x_n (z - a)^n$ is a Banach space valued power series. +> Then either +> +> - the series converges only for $z=a$ (formally $R=0$), or +> - there exists a number $0 the series converges absolutely whenever $\abs{z-a} < R$ +> and diverges whenever $\abs{z-a} > R$, or +> - the series converges absolutely for all $z \in \CC$ (formally $R=\infty$). +> +> The number $R \in [0,\infty]$ is called the *radius of convergence* of the power series. + +{% proof %} +TODO +{% endproof %} + +{: .theorem-title } +> Cauchy–Hadamard Formula +> +> Let $\sum_{n=0}^{\infty} x_n (z - a)^n$ be a Banach space valued power series +> with radius of convergence $R$. Then +> +> $$ +> \frac{1}{R} = \limsup_{n \to \infty} \norm{x_n}^{1/n}. +> $$ + +{% proof %} +TODO +{% endproof %} -- cgit v1.2.3-54-g00ecf