From 777f9d3fd8caf56e6bc6999a4b05379307d0733f Mon Sep 17 00:00:00 2001 From: Justin Gassner Date: Tue, 12 Sep 2023 07:36:33 +0200 Subject: Initial commit --- pages/complex-analysis/index.md | 8 ++ .../one-complex-variable/basics.md | 23 +++++ .../cauchys-integral-formula.md | 102 +++++++++++++++++++++ .../one-complex-variable/cauchys-theorem.md | 39 ++++++++ .../complex-analysis/one-complex-variable/index.md | 9 ++ .../one-complex-variable/power-series.md | 62 +++++++++++++ .../the-calculus-of-residues.md | 60 ++++++++++++ .../several-complex-variables/edge-of-the-wedge.md | 18 ++++ .../several-complex-variables/index.md | 12 +++ .../weak-and-strong-analyticity.md | 18 ++++ 10 files changed, 351 insertions(+) create mode 100644 pages/complex-analysis/index.md create mode 100644 pages/complex-analysis/one-complex-variable/basics.md create mode 100644 pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md create mode 100644 pages/complex-analysis/one-complex-variable/cauchys-theorem.md create mode 100644 pages/complex-analysis/one-complex-variable/index.md create mode 100644 pages/complex-analysis/one-complex-variable/power-series.md create mode 100644 pages/complex-analysis/one-complex-variable/the-calculus-of-residues.md create mode 100644 pages/complex-analysis/several-complex-variables/edge-of-the-wedge.md create mode 100644 pages/complex-analysis/several-complex-variables/index.md create mode 100644 pages/complex-analysis/weak-and-strong-analyticity.md (limited to 'pages/complex-analysis') diff --git a/pages/complex-analysis/index.md b/pages/complex-analysis/index.md new file mode 100644 index 0000000..d07109e --- /dev/null +++ b/pages/complex-analysis/index.md @@ -0,0 +1,8 @@ +--- +title: Complex Analysis +nav_order: 2 +has_children: true +# cspell:words +--- + +# {{ page.title }} diff --git a/pages/complex-analysis/one-complex-variable/basics.md b/pages/complex-analysis/one-complex-variable/basics.md new file mode 100644 index 0000000..b30d18c --- /dev/null +++ b/pages/complex-analysis/one-complex-variable/basics.md @@ -0,0 +1,23 @@ +--- +title: Basics +parent: One Complex Variable +grand_parent: Complex Analysis +nav_order: 1 +# cspell:words +--- + +# {{ page.title }} + +{: .theorem } +> {: #holomorphic-function-is-constant-if-derivative-vanishes } +> +> If the derivative of a holomorphic function vanishes +> throughout a connected open subset of the complex plane, +> then it must be constant on that set. +> +> More generally, if the derivative of a holomorphic function vanishes +> throughout an open subset of the complex plane, +> then it must be constant on any connected component of that set. + +{% proof %} +{% endproof %} diff --git a/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md b/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md new file mode 100644 index 0000000..ccdd0ea --- /dev/null +++ b/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md @@ -0,0 +1,102 @@ +--- +title: Cauchy's Integral Formula +parent: One Complex Variable +grand_parent: Complex Analysis +nav_order: 3 +# cspell:words +--- + +# {{ page.title }} + +{: .theorem-title } +> {{ page.title }} +> +> Let $f : G \to \CC$ be a function holomorphic in an open subset $G \subset \CC$. +> Let $\gamma$ be a contour in $G$ such that the interior of $\gamma$ is contained in $G$. +> Then for any point $a$ in the interior of $\gamma$, +> +> $$ +> f(a) = \frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} \, dz. +> $$ +> {: .katex-display .mb-0 } + +{% proof %} +{% endproof %} + +{: .theorem-title } +> {{ page.title }} (Generalization) +> {: #cauchys-integral-formula-generalized } +> +> Let $f : G \to \CC$ be a function holomorphic in an open subset $G \subset \CC$. +> Then the $n$th derivative $f^{(n)}$ exists for every $n \in \NN$. +> If $\gamma$ is a contour in $G$ such that the interior of $\gamma$ is contained in $G$, +> then for any point $a$ in the interior of $\gamma$, +> +> $$ +> f^{(n)} (a) = \frac{n!}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} \, dz. +> $$ +> {: .katex-display .mb-0 } + +{% proof %} +{% endproof %} + +The last formula may be rewritten as + +$$ +\int_{\gamma} \frac{f(z)}{(z-a)^n} \, dz = \frac{2 \pi i}{(n-1)!} f^{(n-1)}(a) +$$ + +and is often used to compute the integral. + +## Many Consequences + +{: .theorem-title } +> Cauchy's Estimate +> {: #cauchys-estimate } +> +> Let $f$ be holomorphic on an open set containing the disc with center $a$ and radius $r>0$. +> Then +> +> $$ +> \norm{f^{(n)}(a)} \le \frac{n!}{r^n} \sup_{\abs{z-a} = r} \norm{f(z)} \qquad \forall n \in \NN. +> $$ +> {: .katex-display .mb-0 } + +{% proof %} +From [{{ page.title }}](#cauchys-integral-formula-generalized) +for the circular contour around $a$ with radius $r$ we obtain + +$$ +\begin{aligned} +\norm{f^{(n)}(a)} &\le \frac{n!}{2\pi} \sup_{\abs{z-a} = r} \norm{f(z)} \, \int_{\abs{z-a} = r} \frac{dz}{\abs{z-a}^{n+1}}. +\end{aligned} +$$ + +Note that the supremum is finite (and is attained), +because $f$ is continuous and the circle is compact. +Clearly, the integral evaluates to $2 \pi r / r^{n+1}$ +and the right hand side of the inequality reduces to the desired expression. +{% endproof %} + +--- + +Recall that an *entire* function is a holomorphic function that is defined everywhere in the complex plane. + +{: .theorem-title } +> Liouville's Theorem +> {: #liouvilles-theorem } +> +> Every bounded entire function is constant. + +{% proof %} +Consider an entire function $f$ and assume that $\norm{f(z)} \le M$ for all $z \in \CC$ and some $M > 0$. +Since $f$ is holomorphic on the whole plane, we may make +[Cauchy's Estimate](#cauchys-estimate) +for all disks centered at any point $a \in \CC$ and with any radius $r>0$. +For the first derivative, we have $\norm{f'(a)} \le M/r$, which tends to $0$ for $r \to \infty$. +Hence $f' = 0$ in the whole plane. This +[implies](/pages/complex-analysis/one-complex-variable/basics.html#holomorphic-function-is-constant-if-derivative-vanishes) +that $f$ is constant. +{% endproof %} + +--- diff --git a/pages/complex-analysis/one-complex-variable/cauchys-theorem.md b/pages/complex-analysis/one-complex-variable/cauchys-theorem.md new file mode 100644 index 0000000..15412bc --- /dev/null +++ b/pages/complex-analysis/one-complex-variable/cauchys-theorem.md @@ -0,0 +1,39 @@ +--- +title: Cauchy's Theorem +parent: One Complex Variable +grand_parent: Complex Analysis +nav_order: 2 +# cspell:words +--- + +# {{ page.title }} + +{: .theorem-title } +> {{ page.title }} (Homotopy Version) +> +> Let $G$ be a connected open subset of the complex plane. +> Let $f : G \to \CC$ be a holomorphic function. +> If $\gamma_0$, $\gamma_1$ are homotopic closed curves in $G$, then +> +> $$ +> \int_{\gamma_0} \! f(z) \, dz = +> \int_{\gamma_1} \! f(z) \, dz +> $$ +> +> If $\gamma$ is a null-homotopic closed curve in $G$, then +> +> $$ +> \int_{\gamma} f(z) \, dz = 0 +> $$ + +{% proof %} +{% endproof %} + +{{ page.title }} has a converse: + +{: .theorem-title } +> Morera's Theorem +> +> Let $G \subset \CC$ be open and let $f : G \to \CC$ be a continuous function. +> If $\int_{\gamma} f(z) \, dz = 0$ for every contour $\gamma$ contained in $G$, +> then $f$ is holomorphic in $G$. diff --git a/pages/complex-analysis/one-complex-variable/index.md b/pages/complex-analysis/one-complex-variable/index.md new file mode 100644 index 0000000..4942ff8 --- /dev/null +++ b/pages/complex-analysis/one-complex-variable/index.md @@ -0,0 +1,9 @@ +--- +title: One Complex Variable +parent: Complex Analysis +nav_order: 1 +has_children: true +# cspell:words +--- + +# {{ page.title }} diff --git a/pages/complex-analysis/one-complex-variable/power-series.md b/pages/complex-analysis/one-complex-variable/power-series.md new file mode 100644 index 0000000..0147f31 --- /dev/null +++ b/pages/complex-analysis/one-complex-variable/power-series.md @@ -0,0 +1,62 @@ +--- +title: Power Series +parent: One Complex Variable +grand_parent: Complex Analysis +nav_order: 1 +# cspell:words +--- + +# {{ page.title }} + +{: .definition-title } +> Definition ({{ page.title }}) +> +> Let $X$ be a complex Banach space. +> A *power series* (with values in $X$) is an infinite series of the form +> +> +> $$ +> \sum_{n=0}^{\infty} x_n (z - a)^n = x_0 + x_1 (z-a) + x_2 (z-a)^2 + \cdots, +> $$ +> +> where $x_n \in X$ is the *$n$th coefficient*, +> $z$ is a complex variable and +> $a$ is the *center* of the series. + +{: .lemma } +> Suppose the Banach space valued power series $\sum_{n=0}^{\infty} x_n (z - a)^n$ converges for $z = a + w$. +> Then it converges absolutely for all $z$ with $\abs{z-a} < \abs{w}$. + +{% proof %} +TODO +{% endproof %} + +{: .theorem } +> Suppose $\sum_{n=0}^{\infty} x_n (z - a)^n$ is a Banach space valued power series. +> Then either +> +> - the series converges only for $z=a$ (formally $R=0$), or +> - there exists a number $0 the series converges absolutely whenever $\abs{z-a} < R$ +> and diverges whenever $\abs{z-a} > R$, or +> - the series converges absolutely for all $z \in \CC$ (formally $R=\infty$). +> +> The number $R \in [0,\infty]$ is called the *radius of convergence* of the power series. + +{% proof %} +TODO +{% endproof %} + +{: .theorem-title } +> Cauchy–Hadamard Formula +> +> Let $\sum_{n=0}^{\infty} x_n (z - a)^n$ be a Banach space valued power series +> with radius of convergence $R$. Then +> +> $$ +> \frac{1}{R} = \limsup_{n \to \infty} \norm{x_n}^{1/n}. +> $$ + +{% proof %} +TODO +{% endproof %} diff --git a/pages/complex-analysis/one-complex-variable/the-calculus-of-residues.md b/pages/complex-analysis/one-complex-variable/the-calculus-of-residues.md new file mode 100644 index 0000000..b49cdf4 --- /dev/null +++ b/pages/complex-analysis/one-complex-variable/the-calculus-of-residues.md @@ -0,0 +1,60 @@ +--- +title: The Calculus of Residues +parent: One Complex Variable +grand_parent: Complex Analysis +nav_order: 4 +# cspell:words +#published: false +--- + +# {{ page.title }} + +{: .definition-title } +> Definition (Residue) +> +> TODO + +Calculation of Residues + +If $f$ has a simple pole at $c$, then +$\Res(f,c) = \lim_{z \to c} (z-c) f(z)$. + +If $f$ has a pole of order $k$ at $c$, then + +$$ +\Res(f,c) = \frac{1}{(k-1)!} g^{(k-1)}(c), \quad \text{where} \ g(z) = (z-c)^k f(z). +$$ + +If $g$ and $h$ are holomorphic near $c$ and $h$ has a simple zero at $c$, +then $f = g/h$ has a simple pole at $c$ and + +$$ +\Res(f,c) = \frac{g(c)}{h'(c)} +$$ + + + + +{: .theorem-title } +> Residue Theorem (Basic Version) +> {: #residue-theorem-basic-version } +> +> Let $f$ be a function meromorphic in an open subset $G \subset \CC$. +> Let $\gamma$ be a contour in $G$ such that +> the interior of $\gamma$ is contained in $G$ +> and contains finitely many poles $c_1, \ldots, c_n$ of $f$. +> Then +> +> +> $$ +> \int_{\gamma} f(z) \, dz = 2 \pi i \sum_{k=1}^n \Res(f,c_k) +> $$ +> {: .katex-display .mb-0 } + +{% proof %} +{% endproof %} + +TODO +- argument principle +- Rouché's theorem +- winding number diff --git a/pages/complex-analysis/several-complex-variables/edge-of-the-wedge.md b/pages/complex-analysis/several-complex-variables/edge-of-the-wedge.md new file mode 100644 index 0000000..5adc3f6 --- /dev/null +++ b/pages/complex-analysis/several-complex-variables/edge-of-the-wedge.md @@ -0,0 +1,18 @@ +--- +title: Edge of the Wedge +parent: Several Complex Variables +grand_parent: Complex Analysis +nav_order: 1 +# cspell:words +--- + +# {{ page.title }} + +{: .theorem-title } +> {{ page.title }} +> {: #{{ page.title | slugify }} } +> +> ... + +{% proof %} +{% endproof %} diff --git a/pages/complex-analysis/several-complex-variables/index.md b/pages/complex-analysis/several-complex-variables/index.md new file mode 100644 index 0000000..49763d5 --- /dev/null +++ b/pages/complex-analysis/several-complex-variables/index.md @@ -0,0 +1,12 @@ +--- +title: Several Complex Variables +parent: Complex Analysis +nav_order: 2 +has_children: true +# cspell:words +--- + +# {{ page.title }} + +TODO +- Edge of the Wedge Theorem diff --git a/pages/complex-analysis/weak-and-strong-analyticity.md b/pages/complex-analysis/weak-and-strong-analyticity.md new file mode 100644 index 0000000..7db1dbf --- /dev/null +++ b/pages/complex-analysis/weak-and-strong-analyticity.md @@ -0,0 +1,18 @@ +--- +title: Weak and Strong Analyticity +parent: Complex Analysis +nav_order: 3 +published: false +# cspell:words +--- + +# {{ page.title }} + +{: .definition-title } +> {{ page.title }} +> {: #{{ page.title | slugify }} } +> +> ... + +{% proof %} +{% endproof %} -- cgit v1.2.3-54-g00ecf