From a1b5de688d879069b5e1192057d71572c7bc5368 Mon Sep 17 00:00:00 2001 From: Justin Gassner Date: Thu, 29 Feb 2024 17:32:24 +0100 Subject: Update --- .../inner-product-spaces.md | 177 +++++++++++++++++++++ 1 file changed, 177 insertions(+) create mode 100644 pages/functional-analysis-basics/inner-product-spaces.md (limited to 'pages/functional-analysis-basics/inner-product-spaces.md') diff --git a/pages/functional-analysis-basics/inner-product-spaces.md b/pages/functional-analysis-basics/inner-product-spaces.md new file mode 100644 index 0000000..5f34a8a --- /dev/null +++ b/pages/functional-analysis-basics/inner-product-spaces.md @@ -0,0 +1,177 @@ +--- +title: Inner Product Spaces +parent: Functional Analysis Basics +nav_order: 1 +--- + +# {{ page.title }} + +{% definition Inner Product Space %} +An *inner product* on a real or complex vector space $X$ +is a mapping + +$$ +\innerp{\cdot}{\cdot} : X \times X \to \KK +$$ + +that is + +- linear in its second argument +- conjugate symmetric +- nondegenerate + +An *inner product space* is a pair $(X,\innerp{\cdot}{\cdot})$ +consisting of a real or complex vector space $X$ +and an inner product $\innerp{\cdot}{\cdot}$ on $X$. +{% enddefinition %} + +{% proposition Norm Induced by an Inner Product %} +If $\innerp{\cdot}{\cdot}$ is an inner product +on a real or complex vector space $X$, then + +$$ +\norm{x} = \sqrt{\innerp{x}{x}} \qquad \forall x \in X +$$ + +defines a norm on $X$. +{% endproposition %} + +In this sense, every inner product space is also a normed space. +As a consequence it is also a metric space and a topolgical space. + +The next theorem shows how the inner product can be recovered from the norm. + +{% theorem * Polarization Identity %} +For all vectors $x$ and $y$ of a real inner product space + +$$ +4 \innerp{x}{y} = \norm{x+y}^2 - \norm{x-y}^2. +$$ + +For all vectors $x$ and $y$ of a complex inner product space + +$$ +4 \innerp{x}{y} = \norm{x+y}^2 - \norm{x-y}^2 + i \norm{x-iy}^2 - i \norm{x+iy}^2. +$$ +{% endtheorem %} + +Note that the complex polarization identity takes the slightly different form + +$$ +4 \innerp{x}{y} = \norm{x+y}^2 - \norm{x-y}^2 + i \norm{x\mathrel{\color{red}+}iy}^2 - i \norm{x\mathrel{\color{red}-}iy}^2, +$$ + +if we follow the convention that the inner product is conjugate linear in its second argument. + +{% proof %} +In the real case, the inner product is symmetric, and we have + +$$ +\norm{x \pm y}^2 = \norm{x}^2 \pm 2 \innerp{x}{y} + \norm{y}^2 +$$ + +for all vectors $x$ and $y$. +Taking the difference yields the desired result. + +In the complex case, the inner product is conjugate symmetric, and we have + +$$ +\norm{x \pm y}^2 = \norm{x}^2 \pm 2 \Re \innerp{x}{y} + \norm{y}^2 +$$ + +for all vectors $x$ and $y$. This implies + +$$ +\begin{aligned} +\norm{x + \phantom{i}y}^2 - \norm{x - \phantom{i}y}^2 &= 4 \Re \innerp{x}{y}, \\ +\norm{x - iy}^2 - \norm{x + iy}^2 &= 4 \Im \innerp{x}{y}. +\end{aligned} +$$ + +The second equation follows from the first by +substituting $y$ with $-iy$ and +using that $\Re \innerp{x}{-iy} = \Re (-i\innerp{x}{y}) = \Im \innerp{x}{y}$. +To obtain the polarization Identity, multiply the second equation with $i$ and then add it to the first. +{% endproof %} + +{% theorem * General Polarization Identity %} +Let $X$ be a complex inner product space. +Let $\zeta$ be a $n$-th root of unity with $\zeta \ne 1$ and $\zeta^2 \ne 1$. +Then + +$$ +\innerp{x}{y} = \frac{1}{n} \sum_{k=0}^{n-1} \zeta^k \norm{x + \zeta^k y}^2 \qquad \forall x,y \in X. +$$ +{% endtheorem %} + +As a special case, for $\zeta = i$ and $n=4$, we obtain + +$$ +\innerp{x}{y} = \frac{1}{4} \sum_{k=0}^{3} i^k \norm{x + i^k y}^2. +$$ + +{% proof %} +TODO +{% endproof %} + +For an arbitrary normed space, +the polarization identity does not, in general, +define an inner product. +The following theorem, gives a condition for when it does. + +{% theorem * Parallelogram Law %} +Let $X$ be a real or complex normed space. +A norm $\norm{\cdot}$ on $X$ is induced by +an inner product $\innerp{\cdot}{\cdot}$ on $X$, +if and only if $\norm{\cdot}$ satisfies the *parallelogram law* + +$$ +\norm{x+y}^2 + \norm{x-y}^2 = 2 \norm{x}^2 + 2 \norm{y}^2 \qquad \forall x,y \in X. +$$ + +In this case, the inner product is uniquely determined by $\norm{\cdot}$ and given by the polarization identity. +{% endtheorem %} + +{% theorem * Cauchy–Schwarz Inequality %} +For all vectors $x$ and $y$ of an inner product space (with inner product $\innerp{\cdot}{\cdot}$ and induced norm $\norm{\cdot}$) + +$$ +\abs{\innerp{x}{y}} \le \norm{x} \norm{y}, +$$ + +and equality holds precisely when $x$ and $y$ are linearly dependent. +{% endtheorem %} + +Expressed only in terms of the inner product, the Cauchy–Schwarz Inequality reads + +$$ +\abs{\innerp{x}{y}}^2 \le \innerp{x}{x} \innerp{y}{y}. +$$ + +{% proof %} +TODO +{% endproof %} + +{% corollary Continuity of the Inner Product %} +The inner product is jointly norm continous. +{% endcorollary %} + +## Orthogonality + +{% definition Orthogonal Vectors %} +Two vectors $x$ and $y$ of an inner product space $(X,\innerp{\cdot}{\cdot})$ +are said to be *orthogonal* or *perpendicular* if $\innerp{x}{y} = 0$, +and this fact is indicated by writing $x \perp y$. +{% enddefinition %} + +{% theorem * Pythagoras’ Theorem %} +For all vectors $x$ and $y$ of an inner product space we have + +$$ +x \perp y \iff \norm{x+y}^2 = \norm{x}^2 + \norm{y}^2. +$$ +{% endtheorem %} + +{% proof %} +Immediate. +{% endproof %} -- cgit v1.2.3-54-g00ecf