From 73445885d54edffcc9ae74525887b529a3f96165 Mon Sep 17 00:00:00 2001 From: Justin Gassner Date: Sat, 23 Mar 2024 18:08:44 +0100 Subject: Update --- .../inner-product-spaces/orthogonality.md | 79 ++++++++++++++++++++++ 1 file changed, 79 insertions(+) create mode 100644 pages/functional-analysis-basics/inner-product-spaces/orthogonality.md (limited to 'pages/functional-analysis-basics/inner-product-spaces/orthogonality.md') diff --git a/pages/functional-analysis-basics/inner-product-spaces/orthogonality.md b/pages/functional-analysis-basics/inner-product-spaces/orthogonality.md new file mode 100644 index 0000000..4e21138 --- /dev/null +++ b/pages/functional-analysis-basics/inner-product-spaces/orthogonality.md @@ -0,0 +1,79 @@ +--- +title: Orthogonality +parent: Inner Product Spaces +grand_parent: Functional Analysis Basics +nav_order: 1 +--- + +# {{ page.title }} + +{% definition Orthogonal Vectors %} +Two vectors $x$ and $y$ of an inner product space $(X,\innerp{\cdot}{\cdot})$ +are said to be *orthogonal* or *perpendicular* if $\innerp{x}{y} = 0$, +and this fact is indicated by writing $x \perp y$. \ +A set $A \subset X$ is called orthogonal, +if the elements of $S$ are pairwise orthogonal to each other. +{% enddefinition %} + +{% theorem * Pythagoras’ Theorem %} +If $x$ and $y$ are orthogonal vectors of an inner product space, then + +$$ +\norm{x+y}^2 = \norm{x}^2 + \norm{y}^2. +$$ + +More generally,if $\braces{x_1,\ldots,x_n}$ is an orthogonal set in an inner product space, then + +$$ +\norm{x_1 + \cdots + x_n}^2 = +\norm{x_1}^2 + \cdots + \norm{x_n}^2. +$$ +{% endtheorem %} + +The converse of Pythagoras’ Theorem is true for real inner product space, +but false in the complex case. +For example, let $x$ be any unit vector in a complex inner product space. +Then $x$ is not orthogonal to $ix$, since $\innerp{x}{ix} = i \ne 0$. +However, $\norm{x+ix}^2 = \abs{1+i}^2 = 2 = 1 + 1 = \norm{x}^2 + \norm{ix}^2$. + +{% definition Orthonormal Set %} +A subset $S$ of an inner product space is called *orthonormal* +if we have for all $x,y \in S$ + +$$ +\innerp{x}{y} = \begin{cases} +0 & x=y, \\ +1 & x \ne y. +\end{cases} +$$ +{% enddefinition %} + +In other words, an orthonormal set is an orthogonal set of unit vectors. + +{% proposition %} +Every orthonormal set is linearly independent. +{% endproposition %} + +{% proof %} +Suppose that $\braces{x_1,\ldots,x_n}$ is a finite subset of $S$ and that + +$$ +\alpha_1 x_1 + \cdots + \alpha_n x_n = 0 +$$ + +for some scalars $\alpha_1,\ldots,\alpha_n$. +Application of $\innerp{x_i}{\cdot}$ yields +$\alpha_i = 0$ for all $i \in \braces{1,\ldots,n}$. +{% endproof %} + +Recall that a subset $S$ of a normed space $X$ is called total +if its span is dense in $X$. + +{% definition Orthonormal Basis %} +A total orthonormal set in an inner product space is called +*orthonormal basis* (or *complete orthonormal system*). +{% enddefinition %} + +{% theorem %} +Every Hilbert space has an orthonormal basis. +{% endtheorem %} -- cgit v1.2.3-54-g00ecf