From 28407333ffceca9b99fae721c30e8ae146a863da Mon Sep 17 00:00:00 2001 From: Justin Gassner Date: Wed, 14 Feb 2024 07:24:38 +0100 Subject: Update --- .../lebesgue-integral/convergence-theorems.md | 77 ++++++++++++++++++++++ 1 file changed, 77 insertions(+) create mode 100644 pages/measure-and-integration/lebesgue-integral/convergence-theorems.md (limited to 'pages/measure-and-integration/lebesgue-integral/convergence-theorems.md') diff --git a/pages/measure-and-integration/lebesgue-integral/convergence-theorems.md b/pages/measure-and-integration/lebesgue-integral/convergence-theorems.md new file mode 100644 index 0000000..67f0996 --- /dev/null +++ b/pages/measure-and-integration/lebesgue-integral/convergence-theorems.md @@ -0,0 +1,77 @@ +--- +title: Convergence Theorems +parent: Lebesgue Integral +grand_parent: Measure and Integration +nav_order: 2 +--- + +# {{ page.title }} + +For all statements on this page, +assume that $(X,\mathcal{A},\mu)$ is a measure space. + +{% theorem * Monotone Convergence Theorem %} +For each $n \in \NN$ let $f_n : X \to \overline{\RR}$ be a measurable function. +If $0 \le f_n \le f_{n+1}$ almost everywhere, then + +$$ +\int_X \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int_X f_n \, d\mu. +$$ +{% endtheorem %} + +Note that the pointwise limit $\lim_{n \to \infty} f_n$ always exists and is measurable by this proposition. + +{% lemma * Fatou’s Lemma %} +For each $n \in \NN$ let $f_n : X \to \overline{\RR}$ be a nonnegative measurable function. Then + +$$ +\int_X \liminf_{n \to \infty} f_n \, d\mu \le \liminf_{n \to \infty} \int_X f_n \, d\mu. +$$ +{% endlemma %} + +In the following proof we omit $X$ and $d\mu$ for visual clarity. + +{% proof %} +By definition, we have $\liminf_{n \to \infty} f_n = \lim_{n \to \infty} g_n$, where $g_n = \inf_{k \ge n} f_k$. +Now $(g_n)$ is a monotonic sequence of nonnegative measurable functions. +By the +[Monotone Convergence Theorem](#monotone-convergence-theorem) + +$$ +\int \liminf_{n \to \infty} f_n = \lim_{n \to \infty} \int g_n. +$$ + +For all $k \ge n$ one has $g_n \le f_k$, hence +$\int g_n \le \int f_k$ by the monotonicity of the integral. +This implies + +$$ +\int g_n \le \inf_{k \ge n} \int f_k +$$ + +for all $n \in \NN$. In the limit $n \to \infty$ we obtain + +$$ +\lim_{n \to \infty} \int g_n +\le \liminf_{n \to \infty} \int f_n +$$ + +thereby completing the proof. +{% endproof %} + +{% theorem * Dominated Convergence Theorem %} +Let $(X,\mathcal{A},\mu)$ be a measure space. +For each $n \in \NN$ let $f_n : X \to \overline{\RR}$ (or $\CC$) be a measurable function. +Suppose that the pointwise limit $f = \lim_{n \to \infty} f_n$ exists almost everywhere. +Suppose further that there exists an integrable function $g : X \to \overline{\RR}$ +such that $\abs{f_n} \le g$ almost everywhere for all $n \in \NN$. +Then the functions $f_n$ and $f$ are all integrable, and + +$$ +\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu. +$$ +{% endtheorem %} + +{% proof %} +TODO +{% endproof %} -- cgit v1.2.3-54-g00ecf