From 28407333ffceca9b99fae721c30e8ae146a863da Mon Sep 17 00:00:00 2001 From: Justin Gassner Date: Wed, 14 Feb 2024 07:24:38 +0100 Subject: Update --- .../lebesgue-integral/index.md | 112 +++++++++++++++++++++ 1 file changed, 112 insertions(+) create mode 100644 pages/measure-and-integration/lebesgue-integral/index.md (limited to 'pages/measure-and-integration/lebesgue-integral/index.md') diff --git a/pages/measure-and-integration/lebesgue-integral/index.md b/pages/measure-and-integration/lebesgue-integral/index.md new file mode 100644 index 0000000..a857d95 --- /dev/null +++ b/pages/measure-and-integration/lebesgue-integral/index.md @@ -0,0 +1,112 @@ +--- +title: Lebesgue Integral +parent: Measure and Integration +nav_order: 2 +has_children: true +has_toc: false +--- + +# {{ page.title }} + +For this entire section we fix a measure space $(X,\mathcal{A},\mu)$. + +## Integration of Nonnegative Step Functions + +{% definition %} +Let $f : X \to \RR$ be a nonnegative step function +with representation $f = \sum_{i=1}^n \alpha_i \chi_{A_i}$, +where $\alpha_1, \ldots, \alpha_n \ge 0$ and +$A_1, \ldots, A_n \in \mathcal{A}$. +We define the *integral of $f$ on $X$ with respect to $\mu$* by + +$$ +\int_X f \, d\mu = \sum_{i=1}^n \alpha_i \, \mu(A_i) \in [0,\infty]. +$$ +{% enddefinition %} + +TODO: This does not depend on the representation of $f$. + +## Integration of Nonnegative Measurable Functions + +{% theorem Approximation by Step Functions %} +Every nonnegative measurable function $f : X \to \overline{\RR}$ +is the pointwise limit of an increasing sequence $(s_n)$ of +nonnegative step functions $s_n : X \to \RR$. +{% endtheorem %} + +{% definition %} +Let $f : X \to \overline{\RR}$ be a nonnegative measurable function +and let $(s_n)$ be a sequence of nonnegative step functions +with $s_n \uparrow f$. +We define the *integral of $f$ on $X$ with respect to $\mu$* by + +$$ +\int_X f \, d\mu = \lim_{n \to \infty} \int_X s_n \, d\mu \in [0,\infty]. +$$ +{% enddefinition %} + +## Integrable Functions + +Recall that the positive and (flipped) negative parts +of a function $f : X \to \overline{R}$ are defined by + +$$ +f^+ = \max(f,0) \qquad +f^- = \max(-f,0), +$$ + +and that $f$ is measurable if and only if both $f^+$ and $f^-$ are measurable. +We have $f = f^+\! - f^-$. + +{% definition Integrable Function, Lebesgue Integral %} +A measurable function $f : X \to \overline{\RR}$ is said to be +*integrable on $X$ with respect to $\mu$* if the integrals + +$$ +\int_X f^+ \, d\mu, \qquad \int_X f^- \, d\mu +\tag{$*$} +$$ + +are both finite. +In this case the *(Lebesgue) integral of $f$ on $X$ with respect to $\mu$* is defined as + +$$ +\int_X f \, d\mu = \int_X f^+ \, d\mu - \int_X f^- \, d\mu \in \RR. +$$ +{% enddefinition %} + +Sometimes it is convenient to have a slightly more general notion of integrability: + +{% definition Quasi-Integrable Function %} +A measurable function $f : X \to \overline{\RR}$ is said to be +*quasi-integrable on $X$ with respect to $\mu$* if at least one of the integrals +$(*)$ is finite. +In this case the *integral of $f$ on $X$ with respect to $\mu$* is defined as + +$$ +\int_X f \, d\mu = \int_X f^+ \, d\mu - \int_X f^- \, d\mu \in \overline{\RR}. +$$ +{% enddefinition %} + +{% definition %} +A measurable function $f : X \to \CC$ is said to be +*integrable on $X$ with respect to $\mu$* if +$\Re f$ and $\Im f$ are integrable on $X$ with respect to $\mu$. +In this case the *integral of $f$ on $X$ with respect to $\mu$* is defined as + +$$ +\int_X f \, d\mu = \int_X \Re f \, d\mu + i \int_X \Im f \, d\mu \in \CC. +$$ +{% enddefinition %} + +## Integration on Measurable Subsets + +{% definition %} +For any measurable subset $A \subset X$ we define +the *integral on $A$* of a (quasi-)integrable function $f : X \to \overline{\RR}$ (or $\CC$) by + +$$ +\int_A f \, d\mu = +\int_X \chi_A f \, d\mu. +$$ +{% enddefinition %} -- cgit v1.2.3-54-g00ecf