From 28407333ffceca9b99fae721c30e8ae146a863da Mon Sep 17 00:00:00 2001 From: Justin Gassner Date: Wed, 14 Feb 2024 07:24:38 +0100 Subject: Update --- .../measure-theory/sigma-algebras.md | 50 ++++++++++++++++++++++ 1 file changed, 50 insertions(+) create mode 100644 pages/measure-and-integration/measure-theory/sigma-algebras.md (limited to 'pages/measure-and-integration/measure-theory/sigma-algebras.md') diff --git a/pages/measure-and-integration/measure-theory/sigma-algebras.md b/pages/measure-and-integration/measure-theory/sigma-algebras.md new file mode 100644 index 0000000..5d22f6b --- /dev/null +++ b/pages/measure-and-integration/measure-theory/sigma-algebras.md @@ -0,0 +1,50 @@ +--- +title: σ-Algebras +parent: Measure Theory +grand_parent: Measure and Integration +nav_order: 1 +--- + +# {{ page.title }} + +{% definition Sigma-Algebra, Measurable Space, Measurable Set %} +A *σ-algebra* on a set $X$ is a collection $\mathcal{A}$ of subsets of $X$ such that + +- $X$ belongs to $\mathcal{A}$, +- if $A \in \mathcal{A}$, then $X \setminus A \in \mathcal{A}$, +- the union of any countable subcollection of $\mathcal{A}$ belongs to $\mathcal{A}$. + +A *measurable space* is a pair $(X,\mathcal{A})$ consisting of +a set $X$ and a σ-algebra $\mathcal{A}$ on $X$. \ +The subsets of $X$ belonging to $\mathcal{A}$ are called *measurable sets*. +{% enddefinition %} + +{% example %} +On every set $X$ we have the σ-algebras $\braces{\varnothing,X}$ and $\mathcal{P}(X)$. +{% endexample %} + +{% proposition %} +If $\mathcal{A}$ is *σ-algebra* on a set $X$, then: + +- $\varnothing$ belongs to $\mathcal{A}$, +- if $A,B \in \mathcal{A}$, then $B \setminus A \in \mathcal{A}$, +- the intersection of any countable subcollection of $\mathcal{A}$ belongs to $\mathcal{A}$. +{% endproposition %} + +## Generated {{ page.title }} + +{% proposition Intersection of σ-Algebras %} +If $\braces{\mathcal{A}_i}$ is a family of σ-algebras on a set $X$, +then $\bigcap_i \mathcal{A}_i$ is a σ-algebra on $X$. +{% endproposition %} + +{% definition Generated σ-Algebras %} +Suppose $\mathcal{E}$ is any collection of subsets of a set $X$. +The *σ-algebra generated by $\mathcal{E}$*, denoted by $\sigma(\mathcal{E})$, is +defined to be the intersection of all σ-algebras on $X$ containing $\mathcal{A}$. +{% enddefinition %} + +By the previous proposition, $\sigma(\mathcal{E})$ is in fact a σ-algebra on $X$. + +## Products of {{ page.title }} + -- cgit v1.2.3-54-g00ecf