From 7c66b227a494748e2a546fb85317accd00aebe53 Mon Sep 17 00:00:00 2001 From: Justin Gassner Date: Thu, 15 Feb 2024 05:11:07 +0100 Subject: Update --- .../lebesgue-integral/convergence-theorems.md | 6 +++--- pages/measure-and-integration/lebesgue-integral/index.md | 2 +- pages/measure-and-integration/lebesgue-integral/the-lp-spaces.md | 2 +- pages/measure-and-integration/measure-theory/measures.md | 2 +- pages/measure-and-integration/measure-theory/sigma-algebras.md | 1 - pages/measure-and-integration/measure-theory/signed-measures.md | 2 +- 6 files changed, 7 insertions(+), 8 deletions(-) (limited to 'pages/measure-and-integration') diff --git a/pages/measure-and-integration/lebesgue-integral/convergence-theorems.md b/pages/measure-and-integration/lebesgue-integral/convergence-theorems.md index 67f0996..f9ebc4a 100644 --- a/pages/measure-and-integration/lebesgue-integral/convergence-theorems.md +++ b/pages/measure-and-integration/lebesgue-integral/convergence-theorems.md @@ -32,10 +32,10 @@ $$ In the following proof we omit $X$ and $d\mu$ for visual clarity. {% proof %} -By definition, we have $\liminf_{n \to \infty} f_n = \lim_{n \to \infty} g_n$, where $g_n = \inf_{k \ge n} f_k$. +By definition, we have $\liminf_{n \to \infty} f_n = \lim_{n \to \infty} g_n$, +where $g_n = \inf_{k \ge n} f_k$. Now $(g_n)$ is a monotonic sequence of nonnegative measurable functions. -By the -[Monotone Convergence Theorem](#monotone-convergence-theorem) +By the [Monotone Convergence Theorem](#monotone-convergence-theorem) $$ \int \liminf_{n \to \infty} f_n = \lim_{n \to \infty} \int g_n. diff --git a/pages/measure-and-integration/lebesgue-integral/index.md b/pages/measure-and-integration/lebesgue-integral/index.md index a857d95..3418e10 100644 --- a/pages/measure-and-integration/lebesgue-integral/index.md +++ b/pages/measure-and-integration/lebesgue-integral/index.md @@ -106,7 +106,7 @@ For any measurable subset $A \subset X$ we define the *integral on $A$* of a (quasi-)integrable function $f : X \to \overline{\RR}$ (or $\CC$) by $$ -\int_A f \, d\mu = +\int_A f \, d\mu = \int_X \chi_A f \, d\mu. $$ {% enddefinition %} diff --git a/pages/measure-and-integration/lebesgue-integral/the-lp-spaces.md b/pages/measure-and-integration/lebesgue-integral/the-lp-spaces.md index 023c253..8482e87 100644 --- a/pages/measure-and-integration/lebesgue-integral/the-lp-spaces.md +++ b/pages/measure-and-integration/lebesgue-integral/the-lp-spaces.md @@ -1,5 +1,5 @@ --- -title: The Lp Spaces +title: The Lp Spaces parent: Lebesgue Integral grand_parent: Measure and Integration nav_order: 4 diff --git a/pages/measure-and-integration/measure-theory/measures.md b/pages/measure-and-integration/measure-theory/measures.md index 637ab0c..c843881 100644 --- a/pages/measure-and-integration/measure-theory/measures.md +++ b/pages/measure-and-integration/measure-theory/measures.md @@ -14,7 +14,7 @@ is mapping $\mu : \mathcal{A} \to [0,\infty]$ such that - $\mu(\varnothing) = 0$, - for every sequence $(A_n)_{n \in \NN}$ of pairwise disjoint sets $A_n \in \mathcal{A}$ - + $$ \mu \bigg\lparen \bigcup_{n=1}^{\infty} A_n \! \bigg\rparen = \sum_{n=0}^{\infty} \mu(A_n). diff --git a/pages/measure-and-integration/measure-theory/sigma-algebras.md b/pages/measure-and-integration/measure-theory/sigma-algebras.md index 5d22f6b..8f58f09 100644 --- a/pages/measure-and-integration/measure-theory/sigma-algebras.md +++ b/pages/measure-and-integration/measure-theory/sigma-algebras.md @@ -47,4 +47,3 @@ defined to be the intersection of all σ-algebras on $X$ containing $\mathcal{A} By the previous proposition, $\sigma(\mathcal{E})$ is in fact a σ-algebra on $X$. ## Products of {{ page.title }} - diff --git a/pages/measure-and-integration/measure-theory/signed-measures.md b/pages/measure-and-integration/measure-theory/signed-measures.md index 77b2416..657a28f 100644 --- a/pages/measure-and-integration/measure-theory/signed-measures.md +++ b/pages/measure-and-integration/measure-theory/signed-measures.md @@ -18,7 +18,7 @@ is a mapping $\mu : \mathcal{A} \to [-\infty,\infty]$ such that - for every sequence $(A_n)_{n \in \NN}$ of pairwise disjoint sets $A_n \in \mathcal{A}$ {: .my-0 } - + $$ \mu \bigg\lparen \bigcup_{n=1}^{\infty} A_n \! \bigg\rparen = \sum_{n=0}^{\infty} \mu(A_n). -- cgit v1.2.3-54-g00ecf