From 7c66b227a494748e2a546fb85317accd00aebe53 Mon Sep 17 00:00:00 2001 From: Justin Gassner Date: Thu, 15 Feb 2024 05:11:07 +0100 Subject: Update --- pages/operator-algebras/banach-algebras/index.md | 42 +++++++++++++----------- 1 file changed, 23 insertions(+), 19 deletions(-) (limited to 'pages/operator-algebras/banach-algebras/index.md') diff --git a/pages/operator-algebras/banach-algebras/index.md b/pages/operator-algebras/banach-algebras/index.md index 3335d78..9d70df8 100644 --- a/pages/operator-algebras/banach-algebras/index.md +++ b/pages/operator-algebras/banach-algebras/index.md @@ -80,7 +80,7 @@ $$ (\mathbf{1}-x) s_n = s_n (\mathbf{1}-x) = \mathbf{1} - x^{n+1}. $$ -In the limit $n \to \infty$ we obtain $(\mathbf{1}-x) s = s (\mathbf{1}-x) = \mathbf{1}$, +In the limit $n \to \infty$ we obtain $(\mathbf{1}-x) s = s (\mathbf{1}-x) = \mathbf{1}$, because multiplication in a Banach algebra is continuous, and because $y^n \to 0$ when $\norm{y} < 1$. This proves that $s$ is the inverse of $\mathbf{1}-x$. @@ -94,10 +94,12 @@ Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$. {: .mb-0 } {: .my-0 } -- The *spectrum* of $x$ is the set $\sigma(x) = \lbrace\lambda \in \CC : x - \lambda$ is not invertible in $\mathcal{A}\rbrace$. \ +- The *spectrum* of $x$ is the set + $\sigma(x) = \lbrace\lambda \in \CC : x - \lambda$ is not invertible in $\mathcal{A}\rbrace$. \ The elements of $\sigma(x)$ are called *spectral values* of $x$. - The *resolvent set* of $x$ is the set $\rho (x) = \CC \setminus \sigma(x)$. \ - For $\lambda \in \rho(x)$ the *resolvent* of $x$ is the algebra element $R_{\lambda} = (\lambda - x)^{-1}$. \ + For $\lambda \in \rho(x)$ the *resolvent* of $x$ is + the algebra element $R_{\lambda} = (\lambda - x)^{-1}$. \ The mapping $R : \rho(x) \to \mathcal{A}$, $\lambda \mapsto R_{\lambda}$, is called *resolvent map*. {% enddefinition %} @@ -119,7 +121,7 @@ $$ {% proof %} Let $\lambda$ be in the resolvent set of $x$. -Then $\lambda - x$ is invertible, and we have for all $\mu \in \CC$ +Then $\lambda - x$ is invertible, and we have for all $\mu \in \CC$ $$ \mu - x = \bigl(\mathbf{1} - (\lambda - \mu) (\lambda - x)^{-1}\bigr) (\lambda - x). @@ -138,20 +140,22 @@ the claimed formula for its inverse follows by an application of the rule $(ab)^{-1} = b^{-1} a^{-1}$ for invertible $a,b \in \mathcal{A}$. {% endproof %} -{: .corollary #resolvent-set-is-open #spectrum-is-closed } -> The resolvent set $\rho(x)$ is open and the spectrum $\sigma(x)$ is closed. +{% corollary %} +The resolvent set $\rho(x)$ is open and the spectrum $\sigma(x)$ is closed. +{% endcorollary %} -{: .corollary #resolvent-map-is-analytic } -> Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$. -> The resolvent map -> -> $$ -> R : \rho(x) \longrightarrow \mathcal{A}, \quad \lambda \longmapsto R_{\lambda} = (\lambda - x)^{-1}, -> $$ -> -> is (strongly) analytic. +{% corollary %} +Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$. +The resolvent map + +$$ +R : \rho(x) \longrightarrow \mathcal{A}, \quad \lambda \longmapsto R_{\lambda} = (\lambda - x)^{-1}, +$$ + +is (strongly) analytic. +{% endcorollary %} - --- +--- {: .proposition #spectrum-is-not-empty } > Suppose $x$ is an element of a unital Banach algebra. @@ -169,7 +173,7 @@ For $\abs{\lambda} > 2 \norm{x}$ we may expand $R_{\lambda}$ into a [Neumann ser $$ R_{\lambda} = (\lambda - x)^{-1} -= \lambda^{-1} (\mathbf{1} - \lambda^{-1} x)^{-1} += \lambda^{-1} (\mathbf{1} - \lambda^{-1} x)^{-1} = \lambda^{-1} \sum_{n=0}^{\infty} (\lambda^{-1} x)^n, $$ @@ -177,7 +181,7 @@ and make the estimate $$ \norm{R_{\lambda}} -\le \abs{\lambda}^{-1} (1 - \norm{\lambda^{-1} x})^{-1} +\le \abs{\lambda}^{-1} (1 - \norm{\lambda^{-1} x})^{-1} = (\abs{\lambda} - \norm{x})^{-1} < \norm{x}^{-1}. $$ @@ -197,7 +201,7 @@ For any Banach algebra $A$, the mapping $\varphi : \CC \to A$, $\lambda \mapsto \lambda \mathbf{1}$, is linear, multiplicative and isometric, hence injective. Let $x$ be any element of $A$. -Since its +Since its [spectrum is not empty](/pages/operator-algebras/banach-algebras/index.html#spectrum-is-not-empty), there must exist a complex number $\lambda$ such that $x - \lambda \mathbf{1}$ is not invertible. -- cgit v1.2.3-54-g00ecf