From 777f9d3fd8caf56e6bc6999a4b05379307d0733f Mon Sep 17 00:00:00 2001 From: Justin Gassner Date: Tue, 12 Sep 2023 07:36:33 +0200 Subject: Initial commit --- pages/operator-algebras/c-star-algebras/index.md | 8 ++++ .../c-star-algebras/positive-linear-functionals.md | 39 ++++++++++++++++++++ pages/operator-algebras/c-star-algebras/states.md | 43 ++++++++++++++++++++++ 3 files changed, 90 insertions(+) create mode 100644 pages/operator-algebras/c-star-algebras/index.md create mode 100644 pages/operator-algebras/c-star-algebras/positive-linear-functionals.md create mode 100644 pages/operator-algebras/c-star-algebras/states.md (limited to 'pages/operator-algebras/c-star-algebras') diff --git a/pages/operator-algebras/c-star-algebras/index.md b/pages/operator-algebras/c-star-algebras/index.md new file mode 100644 index 0000000..adc1981 --- /dev/null +++ b/pages/operator-algebras/c-star-algebras/index.md @@ -0,0 +1,8 @@ +--- +title: C*-Algebras +parent: Operator Algebras +nav_order: 2 +has_children: true +--- + +# {{ page.title }} diff --git a/pages/operator-algebras/c-star-algebras/positive-linear-functionals.md b/pages/operator-algebras/c-star-algebras/positive-linear-functionals.md new file mode 100644 index 0000000..05b1d4f --- /dev/null +++ b/pages/operator-algebras/c-star-algebras/positive-linear-functionals.md @@ -0,0 +1,39 @@ +--- +title: Positive Linear Functionals +parent: C*-Algebras +grand_parent: Operator Algebras +nav_order: 1 +# cspell:words +--- + +# {{ page.title }} + +all algebra are assumed to be unital + +{: .definition-title } +> Hermitian Functional, Positive Functional, State +> +> A linear functional on a $C^*$-algebra $\mathcal{A}$ is said to be +> +> - *Hermitian* if $\phi(x*) = \overline{\phi(x)}$ for all $x \in \mathcal{A}$. +> - *positive* if $\phi(x) \ge 0$ for all $x \ge 0$. +> - a *state* if $\phi$ is positive and $\phi(\mathbf{1}) = 1$. +> + +{: .definition-title } +> State +> +> A norm-one positive linear functional on a $C^*$-algebra is called a *state*. + +{: .definition-title } +> State Space +> +> The *state space* of a $C^*$-algebra $\mathcal{A}$, denoted by $S(\mathcal{A})$, is the set of all states of $\mathcal{A}$. + +Note that $S(\mathcal{A})$ is a subset of the unit ball in the dual space of $\mathcal{A}$. + +{: .proposition } +> The state space of a $C^*$-algebra is convex and weak* compact. + +{% proof %} +{% endproof %} diff --git a/pages/operator-algebras/c-star-algebras/states.md b/pages/operator-algebras/c-star-algebras/states.md new file mode 100644 index 0000000..619bc9a --- /dev/null +++ b/pages/operator-algebras/c-star-algebras/states.md @@ -0,0 +1,43 @@ +--- +title: States +parent: C*-Algebras +grand_parent: Operator Algebras +nav_order: 1 +# cspell:words +--- + +# {{ page.title }} + +{: .definition-title } +> Definition (State, State Space) +> +> A norm-one [positive linear functional]( {% link pages/operator-algebras/c-star-algebras/positive-linear-functionals.md %} ) on a C\*-algebra is called a *state*.\ +> The *state space* $S(\mathcal{A})$ of a C\*-algebra $\mathcal{A}$ is the set of all its states. + +Note that $S(\mathcal{A})$ is a subset of the unit ball in the dual space of $\mathcal{A}$. + +{: .corollary } +> A linear functional $\omega$ on a C\*-algebra is a state +> if and only if $\omega(\mathbf{1}) = 1 = \norm{\omega}$. + +{: .proposition } +> The state space of a C\*-algebra is convex and weak\* compact. + +{% proof %} +First, we show convexity. +Let $\omega_0, \omega_1$ be states on $\mathcal{A}$ and let $t \in (0,1)$. +Consider the convex combination $\omega = (1-t)\omega_0 + t\omega_1$. +Clearly, $\omega$ is linear and $\omega(\mathbf{1}) = 1$. +By the triangle inequality, $\norm{\omega} \le 1$. +It follows from the lemma above that $\omega$ lies in $S(\mathcal{A})$. This proves that $S(\mathcal{A})$ is convex. + +Next we show weak\* compactness. Since $S(\mathcal{A})$ is contained +in the closed unit ball in the dual of $\mathcal{A}$, +which is weak\* compact by the +[Banach–Alaoglu Theorem]({% link pages/functional-analysis-basics/banach-alaoglu-theorem.md %}), +it will suffice to show that $S(\mathcal{A})$ is weak\* closed. +Let $(\omega_i)$ be a net of states that weak\* converges to some bounded linear functional $\omega$ on $\mathcal{A}$. +This means that $\omega_i(x) \to \omega(x)$ for every $x \in \mathcal{A}$. +For all $i$ we have $\omega_i(x) \ge 0$ for $x \ge 0$ and $\omega_i(\mathbf{1}) = 1$; hence $\omega(x) \ge 0$ for $x \ge 0$ and $\omega(\mathbf{1}) = 1$. Thus $\omega$ is again a state. +This shows that the state space is weak* closed, completing the proof. +{% endproof %} -- cgit v1.2.3-54-g00ecf