--- title: Power Series parent: One Complex Variable grand_parent: Complex Analysis nav_order: 1 --- # {{ page.title }} {% definition Power Series %} Let $X$ be a complex Banach space. A *power series* (with values in $X$) is an infinite series of the form $$ \sum_{n=0}^{\infty} x_n (z - a)^n = x_0 + x_1 (z-a) + x_2 (z-a)^2 + \cdots, $$ where $x_n \in X$ is the *$n$th coefficient*, $z$ is a complex variable and $a$ is the *center* of the series. {% enddefinition %} {% lemma %} Suppose the Banach space valued power series $\sum_{n=0}^{\infty} x_n (z - a)^n$ converges for $z = a + w$. Then it converges absolutely for all $z$ with $\abs{z-a} < \abs{w}$. {% endlemma %} {% proof %} TODO {% endproof %} {% theorem %} Suppose $\sum_{n=0}^{\infty} x_n (z - a)^n$ is a Banach space valued power series. Then either - the series converges only for $z=a$ (formally $R=0$), or - there exists a number $0 R$, or - the series converges absolutely for all $z \in \CC$ (formally $R=\infty$). The number $R \in [0,\infty]$ is called the *radius of convergence* of the power series. {% endtheorem %} {% proof %} TODO {% endproof %} {% theorem * Cauchy–Hadamard Formula %} Let $\sum_{n=0}^{\infty} x_n (z - a)^n$ be a Banach space valued power series with radius of convergence $R$. Then $$ \frac{1}{R} = \limsup_{n \to \infty} \norm{x_n}^{1/n}. $$ {% endtheorem %} {% proof %} TODO {% endproof %}