--- title: Power Series parent: One Complex Variable grand_parent: Complex Analysis nav_order: 1 # cspell:words --- # {{ page.title }} {: .definition-title } > Definition ({{ page.title }}) > > Let $X$ be a complex Banach space. > A *power series* (with values in $X$) is an infinite series of the form > > > $$ > \sum_{n=0}^{\infty} x_n (z - a)^n = x_0 + x_1 (z-a) + x_2 (z-a)^2 + \cdots, > $$ > > where $x_n \in X$ is the *$n$th coefficient*, > $z$ is a complex variable and > $a$ is the *center* of the series. {: .lemma } > Suppose the Banach space valued power series $\sum_{n=0}^{\infty} x_n (z - a)^n$ converges for $z = a + w$. > Then it converges absolutely for all $z$ with $\abs{z-a} < \abs{w}$. {% proof %} TODO {% endproof %} {: .theorem } > Suppose $\sum_{n=0}^{\infty} x_n (z - a)^n$ is a Banach space valued power series. > Then either > > - the series converges only for $z=a$ (formally $R=0$), or > - there exists a number $0 the series converges absolutely whenever $\abs{z-a} < R$ > and diverges whenever $\abs{z-a} > R$, or > - the series converges absolutely for all $z \in \CC$ (formally $R=\infty$). > > The number $R \in [0,\infty]$ is called the *radius of convergence* of the power series. {% proof %} TODO {% endproof %} {: .theorem-title } > Cauchy–Hadamard Formula > > Let $\sum_{n=0}^{\infty} x_n (z - a)^n$ be a Banach space valued power series > with radius of convergence $R$. Then > > $$ > \frac{1}{R} = \limsup_{n \to \infty} \norm{x_n}^{1/n}. > $$ {% proof %} TODO {% endproof %}