--- title: The Calculus of Residues parent: One Complex Variable grand_parent: Complex Analysis nav_order: 4 # cspell:words #published: false --- # {{ page.title }} {: .definition-title } > Definition (Residue) > > TODO Calculation of Residues If $f$ has a simple pole at $c$, then $\Res(f,c) = \lim_{z \to c} (z-c) f(z)$. If $f$ has a pole of order $k$ at $c$, then $$ \Res(f,c) = \frac{1}{(k-1)!} g^{(k-1)}(c), \quad \text{where} \ g(z) = (z-c)^k f(z). $$ If $g$ and $h$ are holomorphic near $c$ and $h$ has a simple zero at $c$, then $f = g/h$ has a simple pole at $c$ and $$ \Res(f,c) = \frac{g(c)}{h'(c)} $$ {: .theorem-title } > Residue Theorem (Basic Version) > {: #residue-theorem-basic-version } > > Let $f$ be a function meromorphic in an open subset $G \subset \CC$. > Let $\gamma$ be a contour in $G$ such that > the interior of $\gamma$ is contained in $G$ > and contains finitely many poles $c_1, \ldots, c_n$ of $f$. > Then > > > $$ > \int_{\gamma} f(z) \, dz = 2 \pi i \sum_{k=1}^n \Res(f,c_k) > $$ > {: .katex-display .mb-0 } {% proof %} {% endproof %} TODO - argument principle - Rouché's theorem - winding number