--- title: Hahn–Banach Theorem parent: The Fundamental Four grand_parent: Functional Analysis Basics nav_order: 1 --- # {{ page.title }} In fact, there are multiple theorems and corollaries which bear the name Hahn–Banach. All have in common that they guarantee the existence of linear functionals with various additional properties. {: .definition-title } > Definition (Sublinear Functional) > > A functional $p$ on a real vector space $X$ > is called *sublinear* if it is > {: .mb-0 } > > {: .mt-0 .mb-0 } > - *positive-homogenous*, that is > {: .mt-0 .mb-0 } > > $$ > p(\alpha x) = \alpha \, p(x) \qquad \forall \alpha \ge 0, \ \forall x \in X, > $$ > > - and satisfies the *triangle inequality* > {: .mt-0 .mb-0 } > > $$ > p(x+y) \le p(x) + p(y) \qquad \forall x,y \in X. > $$ > {: .katex-display .mb-0 } If $p$ is a sublinear functional, then $p(0)=0$ and $p(-x) \ge -p(x)$ for all $x$. Every norm on a real vector space is a sublinear functional. {: .theorem-title } > {{ page.title }} (Basic Version) > > Let $p$ be a sublinear functional on a real vector space $X$. > Then there exists a linear functional $f$ on $X$ satisfying > $f(x) \le p(x)$ for all $x \in X$. ## Extension Theorems {: .theorem-title } > {{ page.title }} (Extension, Real Vector Spaces) > > Let $p$ be a sublinear functional on a real vector space $X$. > Let $f$ be a linear functional > which is defined on a linear subspace $Z$ of $X$ > and satisfies > > $$ > f(x) \le p(x) \qquad \forall x \in Z. > $$ > > Then $f$ has a linear extension $\tilde{f}$ to $X$ such that > > $$ > \tilde{f}(x) \le p(x) \qquad \forall x \in X. > $$ {% proof %} {% endproof %} {: .definition-title } > Definition (Semi-Norm) > > We call a real-valued functional $p$ on a real or complex vector space $X$ > a *semi-norm* if it is > {: .mb-0 } > > {: .mt-0 .mb-0 } > - *absolutely homogenous*, that is > {: .mt-0 .mb-0 } > > $$ > p(\alpha x) = \abs{\alpha} \, p(x) \qquad \forall \alpha \in \KK \ \forall x \in X, > $$ > - and satisfies the *triangle inequality* > {: .mt-0 .mb-0 } > > $$ > p(x+y) \le p(x) + p(y) \qquad \forall x,y \in X. > $$ > {: .katex-display .mb-0 } {: .theorem-title } > {{ page.title }} (Extension, Real and Complex Vector Spaces) > > Let $p$ be a semi-norm on a real or complex vector space $X$. > Let $f$ be a linear functional > which is defined on a linear subspace $Z$ of $X$ > and satisfies > > $$ > \abs{f(x)} \le p(x) \qquad \forall x \in Z. > $$ > > Then $f$ has a linear extension $\tilde{f}$ to $X$ such that > > $$ > \abs{\tilde{f}(x)} \le p(x) \qquad \forall x \in X. > $$ {: .theorem-title } > {{ page.title }} (Extension, Normed Spaces) > > Let $X$ be a real or complex normed space > and let $f$ be a bounded linear functional > defined on a linear subspace $Z$ of $X$. > Then $f$ has a bounded linear extension $\tilde{f}$ to $X$ such that $\norm{\tilde{f}} = \norm{f}$. {% proof %} We apply the preceding theorem with $p(x) = \norm{f} \norm{x}$ and obtain a linear extension $\tilde{f}$ of $f$ to $X$ satisfying $\abs{\tilde{f}(x)} \le \norm{f} \norm{x}$ for all $x \in X$. This implies that $\tilde{f}$ is bounded and $\norm{\tilde{f}} \le \norm{f}$. We have $\norm{\tilde{f}} \ge \norm{f}$, because $\tilde{f}$ extends $f$. {% endproof %} Corollaries Important consequence: canonical embedding into bidual ## Separation Theorems {: .theorem-title } > {{ page.title }} (Separation, Point and Closed Subspace) > > Suppose $Z$ is a closed subspace > of a normed space $X$ and $x$ lies in $X \setminus Z$. > Then there exists a bounded linear functional on $X$ > which vanishes on $Z$ but has a nonzero value at $x$. {: .theorem-title } > {{ page.title }} (Separation, Convex Sets) > > TODO