--- title: σ-Algebras parent: Measure Theory grand_parent: Measure and Integration nav_order: 1 --- # {{ page.title }} {% definition Sigma-Algebra, Measurable Space, Measurable Set %} A *σ-algebra* on a set $X$ is a collection $\mathcal{A}$ of subsets of $X$ such that - $X$ belongs to $\mathcal{A}$, - if $A \in \mathcal{A}$, then $X \setminus A \in \mathcal{A}$, - the union of any countable subcollection of $\mathcal{A}$ belongs to $\mathcal{A}$. A *measurable space* is a pair $(X,\mathcal{A})$ consisting of a set $X$ and a σ-algebra $\mathcal{A}$ on $X$. \ The subsets of $X$ belonging to $\mathcal{A}$ are called *measurable sets*. {% enddefinition %} {% example %} On every set $X$ we have the σ-algebras $\braces{\varnothing,X}$ and $\mathcal{P}(X)$. {% endexample %} {% proposition %} If $\mathcal{A}$ is *σ-algebra* on a set $X$, then: - $\varnothing$ belongs to $\mathcal{A}$, - if $A,B \in \mathcal{A}$, then $B \setminus A \in \mathcal{A}$, - the intersection of any countable subcollection of $\mathcal{A}$ belongs to $\mathcal{A}$. {% endproposition %} ## Generated {{ page.title }} {% proposition Intersection of σ-Algebras %} If $\braces{\mathcal{A}_i}$ is a family of σ-algebras on a set $X$, then $\bigcap_i \mathcal{A}_i$ is a σ-algebra on $X$. {% endproposition %} {% definition Generated σ-Algebras %} Suppose $\mathcal{E}$ is any collection of subsets of a set $X$. The *σ-algebra generated by $\mathcal{E}$*, denoted by $\sigma(\mathcal{E})$, is defined to be the intersection of all σ-algebras on $X$ containing $\mathcal{A}$. {% enddefinition %} By the previous proposition, $\sigma(\mathcal{E})$ is in fact a σ-algebra on $X$. ## Products of {{ page.title }}