--- title: Signed Measures parent: Measure Theory grand_parent: Measure and Integration nav_order: 10 --- # {{ page.title }} {% definition Signed Measure %} A *signed measure* on a σ-algebra $\mathcal{A}$ on a set $X$ is a mapping $\mu : \mathcal{A} \to [-\infty,\infty]$ such that {: .mb-0 } - $\mu(\varnothing) = 0$, - either there is no $A \in \mathcal{A}$ with $\mu(A) = -\infty$ or there is no $A \in \mathcal{A}$ with $\mu(A) = \infty$, - for every sequence $(A_n)_{n \in \NN}$ of pairwise disjoint sets $A_n \in \mathcal{A}$ {: .my-0 } $$ \mu \bigg\lparen \bigcup_{n=1}^{\infty} A_n \! \bigg\rparen = \sum_{n=0}^{\infty} \mu(A_n). $$ {% enddefinition %} {% definition Measure Space %} A *measure space* is a triple $(X,\mathcal{A},\mu)$ of a set $X$, a σ-algebra $\mathcal{A}$ on $X$ and a measure $\mu$ on $\mathcal{A}$. {% enddefinition %}