summaryrefslogtreecommitdiffstats
path: root/analytic2.tex
diff options
context:
space:
mode:
authorJustin Gassner <justin.gassner@mailbox.org>2024-09-25 00:26:13 +0200
committerJustin Gassner <justin.gassner@mailbox.org>2024-09-25 00:26:13 +0200
commitfadd6961c92393d86de69ec468f0a15a2f320252 (patch)
tree44e742f0fdb606f28cb009ec4f471c7a28c9c196 /analytic2.tex
parente1a26e4528eb7b9c2f462562c8265cf963f34dfb (diff)
downloadmaster.tar.zst
Diffstat (limited to 'analytic2.tex')
-rw-r--r--analytic2.tex9
1 files changed, 5 insertions, 4 deletions
diff --git a/analytic2.tex b/analytic2.tex
index 13b6700..0648130 100644
--- a/analytic2.tex
+++ b/analytic2.tex
@@ -22,7 +22,7 @@ that is, in the open disc with radius $t$ centered in the origin of the complex
This is a well-known consequence of the convergence behavior of power series.
\begin{definition}{Analyticity of Vector-Valued Functions}{}
- Let $G \subset \CC$ be open and let $\hilb{H}$ be a Hilbert space.
+ Let $G \subset \CC$ be open and let $\hilb{X}$ be a Banach space.
A function $f : G \to \hilb{H}$ is called
\begin{itemize}
\item \emph{strongly analytic} at $a \in G$, if the limit
@@ -38,6 +38,10 @@ This is a well-known consequence of the convergence behavior of power series.
\end{itemize}
\end{definition}
+\begin{lemma}{Uniform Boundedness Theorem}{uniform-boundedness-theorem}
+ If a collection of bounded linear operators from a Banach space into a normed space is pointwise bounded, then it is uniformly bounded.
+\end{lemma}
+
\begin{lemma}{Equivalence of Weak and Strong Analyticity}{}
Let $G \subset \CC$ be open.
Then a Banach space-valued function is strongly analytic on $G$ if and only if it is weakly analytic on $G$.
@@ -130,6 +134,3 @@ This is a well-known consequence of the convergence behavior of power series.
\end{equation*}
has a positive radius of convergence $t>0$.
\end{myproof}
-
-\chapterbib
-\cleardoublepage