summaryrefslogtreecommitdiffstats
path: root/analytic2.tex
diff options
context:
space:
mode:
Diffstat (limited to 'analytic2.tex')
-rw-r--r--analytic2.tex135
1 files changed, 135 insertions, 0 deletions
diff --git a/analytic2.tex b/analytic2.tex
new file mode 100644
index 0000000..e0dc68f
--- /dev/null
+++ b/analytic2.tex
@@ -0,0 +1,135 @@
+\chapter{Analytic Vectors}
+
+\info{Dies ist nur ein Relikt meines Studiums analytischer Vektoren. Wird wieder entfernt, falls nicht benötigt.}
+
+\begin{definition}{Analytic Vector for an Operator}{analytic-vector-operator}
+ Let $A : D(A) \to \hilb{H}$ be an unbounded linear operator in a complex Hilbert space $\hilb{H}$.
+ A vector $x \in \hilb{H}$ is said to be an \emph{analytic vector} for $A$,
+ if $x$ lies in the domain of the power $A^n$ for all $n \in \NN$, and the power series
+ \begin{equation*}\tag{power-series-analytic-vector}
+ \sum_{n=0}^{\infty} \frac{A^n x}{n!} \, z^n
+ \end{equation*}
+ has a nonzero radius of convergece.
+ If the power series converges for all $z \in \CC$,
+ we say that $x$ is an \emph{entire analytic vector} for $A$.
+\end{definition}
+Note that, if $x$ is analytic for $A$, then the power series
+\begin{equation*}
+ \sum_{n=0}^{\infty} \frac{\norm{A^n x}}{n!} \, z^n
+\end{equation*}
+converges for all complex $z$ with $\abs{z} < t$,
+that is, in the open disc with radius $t$ centered in the origin of the complex plane.
+This is a well-known consequence of the convergence behavior of power series.
+
+\begin{definition}{Analyticity of Vector-Valued Functions}{}
+ Let $G \subset \CC$ be open and let $\hilb{H}$ be a Hilbert space.
+ A function $f : G \to \hilb{H}$ is called
+ \begin{itemize}
+ \item \emph{strongly analytic} at $a \in G$, if the limit
+ \begin{equation*}
+ \lim_{z \to a} \frac{f(z) - f(a)}{z-a}
+ \end{equation*}
+ exists in norm.
+ \item \emph{weakly analytic} in $a \in G$, if for each $w \in \CC$ the scalar-valued function
+ \begin{equation*}
+ G \longrightarrow \CC, \quad z \longmapsto \innerp{w}{f(z)}
+ \end{equation*}
+ is analytic in $a$.
+ \end{itemize}
+\end{definition}
+
+\begin{lemma}{Equivalence of Weak and Strong Analyticity}{}
+ Let $G \subset \CC$ be open.
+ Then a Banach space-valued function is strongly analytic on $G$ if and only if it is weakly analytic on $G$.
+\end{lemma}
+\begin{myproof}
+ Let $X$ be a Banach space and suppose that the function $f : G \to X$ is weakly analytic.
+ By definition, for each $g \in X'$ the scalar valued function $g \circ f : G \to \CC$ is analytic on $G$.
+ Consider a point $a \in G$.
+ Since $G$ is open, there exists a circular contour $\gamma$ around $a$ such that $\gamma$ and its interior lie wholly inside of $G$.
+ By Cauchy’s Integral Formula we have
+ \begin{equation*}
+ g(f(z)) = \frac{1}{2 \pi i} \int_{\gamma} \frac{g(f(w))}{w-z} \, dw
+ \end{equation*}
+ for any $z$ in the interior of $\gamma$.
+ Writing
+ \begin{equation*}
+ Q(z) = \frac{f(z) - f(a)}{z - a}
+ \end{equation*}
+ for the difference quotient, we get
+ \begin{equation*}
+ g(Q(z)) = \frac{1}{2 \pi i} \int_{\gamma} \frac{g(f(w))}{(w-z)(w-a)} \, dw
+ \end{equation*}
+ and
+ \begin{equation*}
+ g \parens*{\frac{Q(z) - Q(z')}{z - z'}} = \frac{1}{2 \pi i} \int_{\gamma} \frac{g(f(w))}{(w-z)(w-z')(w-a)} \, dw
+ \end{equation*}
+ for all $z,z'$ in the interior of $\gamma$.
+ The family of vectors $f(w) \in X$, indexed by complex numbers $w$ on the contour $\gamma$, can be viewed as a family of bounded linear functionals $C(f(w)) : X' \to \CC$
+ via the canonical embedding $C : X \to X''$ of $X$ into its bidual. For every fixed $g \in X'$ the set of values $C(f(w))(g) = g(f(w))$ is bounded, because the function $g \circ f$ is continous and the contour is compact.
+ In other words, the family of functionals $C(f(w))$, $w \in \gamma$, is pointwise bounded.
+ The Uniform Boundedness Theorem implies that there exists a constant $M > 0$ such that $\abs{g(f(w))} \le M \norm{g}$ for all $w$ on $\gamma$ and all $g \in X'$.
+ \begin{equation*}
+ \abs*{g \parens*{\frac{Q(z) - Q(z')}{z - z'}}} \le \frac{M}{2 \pi} \norm{g} \int_{\gamma} \frac{dw}{\abs{w-z}\abs{w-z'}\abs{w-a}}
+ \end{equation*}
+ If we restict $z,z'$ to a neighbourhood $N$ of $a$ that stays away from $\gamma$, then the integral on the right hand side is
+ bounded by a constant independent of $z$ and $z'$.
+ Absorbing all constants into $M' > 0$ we obtain
+ \begin{equation*}
+ \abs{g(Q(z) - Q(z'))} \le M' \norm{g} \abs{z-z'} \quad \forall z,z' \in N.
+ \end{equation*}
+ \begin{equation*}
+ \norm{Q(z) - Q(z')} = \sup_{\substack{g \in X'\\ \norm{g} \le 1}} \abs{g(Q(z) - Q(z'))} \le M' \norm{z - z'}.
+ \end{equation*}
+ Hence, the limit of $Q(z)$ for $z \to a$ exists by completeness of $X$.
+\end{myproof}
+
+\begin{definition}{Analytic Vector for an Unitary Group}{analytic-vector-unitary-group}
+ Let $\sigma : \RR \to U(\hilb{H})$ be a strongly continuous one-parameter unitary group on a complex Hilbert space $\hilb{H}$.
+ A vector $x \in \hilb{H}$ is said to be an \emph{analytic vector} for $\sigma$, if there exist
+ \begin{itemize}
+ \item a number $\lambda > 0$, defining a strip $I_{\lambda} = \braces{z : \abs{\Im z} < 1}$, and
+ \item a vector-valued function $f : I_{\lambda} \to \hilb{H}$,
+ \end{itemize}
+ with the properties that
+ \begin{itemize}
+ \item $f(t) = \sigma_t(x)$ for all $t \in \RR$,
+ \item $f$ is weakly analytic on $I_{\lambda}$.
+ \end{itemize}
+ In this case we write $f(z) = \sigma_z(x)$ for $z \in I_{\lambda}$.
+\end{definition}
+
+\begin{proposition}{}{}
+ Let $\sigma : \RR \to U(\hilb{H})$ be a strongly continuous one-parameter unitary group on a complex Hilbert space $\hilb{H}$
+ and let $A$ be its infinitesimal generator.
+ Then a vector $x \in \hilb{H}$ is analytic for $\sigma$ if and only if it is analytic for $A$.
+\end{proposition}
+
+\begin{myproof}
+ First, suppose that $x$ is an analytic vector for $\sigma$.
+ Then, there exist a number $\lambda > 0$ and a function $f : I_{\lambda} \to X$ as in \cref{definition:analytic-vector-unitary-group}.
+ In particular, $f$ is (strongly) analytic on the strip $I_{\lambda}$, which contains the disk $\braces{z : \abs{z} \le r}$ when $r \le \lambda$.
+ Hence we have Cauchy estimates
+ \begin{equation*}
+ \norm{f^{(n)}(0)} \le \frac{n!}{r^n} M \quad \forall n \in \NN,
+ \quad \text{where} \ M = \sup_{\abs{z} = r} \norm{f(z)}.
+ \end{equation*}
+ For real $t$ we have $f(t) = \sigma_t(x) = \exp(itA) x$ and
+ the mapping $t \mapsto f(t)$ is strongly differentiable with derivatives
+ $f^{(n)}(0) = (iA)^n x$.
+ This implies that the power series
+ \begin{equation*}
+ \sum_{n=0}^{\infty} \frac{\norm{A^n x}}{n!} t^n \le M \sum_{n=0}^{\infty} \frac{t^n}{r^n}
+ \end{equation*}
+ is convergent for $t \le \lambda$ by majorization. Hernce $x$ is an analytic vector for the operator $A$.
+
+ Coversely, suppose that $x$ is analytic for the generator $A$ of $\sigma$.
+ Then, by \cref{definition:analytic-vector-operator}, $x$ lies in the domains of all powers $A^n$, $n \in \NN$, and the power series
+ \begin{equation*}
+ \sum_{n=0}^{\infty} \frac{\norm{A^n x}}{n!} z^n
+ \end{equation*}
+ has a positive radius of convergence $t>0$.
+\end{myproof}
+
+\chapterbib
+\cleardoublepage