summaryrefslogtreecommitdiffstats
path: root/stresstensor.tex
diff options
context:
space:
mode:
Diffstat (limited to 'stresstensor.tex')
-rw-r--r--stresstensor.tex242
1 files changed, 177 insertions, 65 deletions
diff --git a/stresstensor.tex b/stresstensor.tex
index 39c45cd..a4bb6fb 100644
--- a/stresstensor.tex
+++ b/stresstensor.tex
@@ -1,4 +1,4 @@
-\chapter{Construction of the Stress Tensor of a Free Scalar Quantum Field}
+\chapter{Construction of the Stress Tensor of~a~Free~Scalar~Quantum~Field}
\label{chapter:stress-tensor}
\begin{center}
@@ -88,46 +88,14 @@ as a service to the reader.
\begin{equation*}
\realschwartz{M} \ni f \mapsto \Phi(f) = \Phi_{\mathrm{S}}(Ef) = \frac{1}{\sqrt{2}} \parens*{a(Ef) + a(Ef)^\dagger}
\end{equation*}
- \item annihilation and creation operators, $f \in \schwartz{M}$, $\psi \in \BosonFock{\hilb{H}}$
+ \item
+ annihilation and creation operators, $f \in \schwartz{M}$, $\psi \in \BosonFock{\hilb{H}}$
\begin{align*}
\parens[\big]{a(f) \psi} {}_n (k_1, \ldots, k_n)
&= \sqrt{n+1} \int_M \! \overline{Ef(p)} \, \psi_{n+1} (p,k_1, \ldots, k_n) \, d\Omega_m(p) \\
\parens[\big]{a(f)^\dagger \psi} {}_n (k_1, \ldots, k_n)
&= \frac{1}{\sqrt{n}} \sum_{i=1}^n Ef(k_i) \, \psi_{n-1} (k_1, \ldots, \widehat{k_i}, \ldots, k_n)
\end{align*}
- annihilation operator a point $p$ in momentum space.
- \begin{equation*}
- \parens[\big]{a(p) \psi} {}_n (k_1, \ldots, k_n)
- = \sqrt{n+1} \, \psi_{n+1} (p,k_1, \ldots, k_n)
- \end{equation*}
- creation \enquote{operator} a point $p$ in momentum space.
- \begin{equation*}
- \parens[\big]{a(p)^\dagger \psi} {}_n (k_1, \ldots, k_n)
- = \frac{1}{\sqrt{n}} \sum_{i=1}^n \delta(p - k_i) \, \psi_{n-1} (k_1, \ldots, \widehat{k_i}, \ldots, k_n)
- \end{equation*}
- \begin{gather*}
- a(p)^\dagger : F \times F \longrightarrow \CC \\
- \innerp[\big]{\psi'}{a(p)^\dagger \psi}
- \defequal
- \begin{multlined}[t]
- \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sum_{i=1}^n
- \int_M \! d\Omega_m(k_1) \cdots \widehat{d\Omega_m(k_i)} \cdots d\Omega_m(k_n) \\
- \cdot \overline{\psi'_{n} (k_1, \ldots, \underset{i}{p}, \ldots, k_n)}
- \psi_{n-1} (k_1, \ldots, \widehat{k_i}, \ldots, k_n)
- \end{multlined}
- \end{gather*}
- \begin{equation*}
- \innerp[\big]{\psi'}{a(p)^\dagger \psi} =
- \innerp[\big]{a(p) \psi'}{\psi}
- \end{equation*}
- TODO(Explain why creation op at a point is actually not an op but a QF)
- \begin{equation*}
- a(p_1)^\dagger \cdots a(p_s)^\dagger a(p_{s+1}) \cdots a(p_r)
- \end{equation*}
- \begin{equation*}
- \innerp[\big]{\psi'}{a(p_1)^\dagger \cdots a(p_s)^\dagger a(p_{s+1}) \cdots a(p_r) \psi}
- = \innerp[\big]{a(p_1) \cdots a(p_s) \psi'}{a(p_{s+1}) \cdots a(p_r) \psi}
- \end{equation*}
\end{itemize}
\begin{equation*}
@@ -180,6 +148,122 @@ into annihilation operators on the left.
\end{multlined}
\end{align*}
+\section{Quadratic Forms}
+
+In a typical physics literature treatment of second quantization,
+the annihilation and creation operators and the quantized field are treated as
+point-dependent operator valued functions $a(p)$, $a^\dagger(p)$, $\varphi(x)$,
+disregarding the fact that these may not be operators, in a strict sense, and without smearing with a test function.
+Nonetheless, this notational fiction is useful, and we can uphold it with little effort by giving
+the pointwise \enquote{operators} rigorous meaning as quadratic forms.
+
+Given a point $p$ in momentum space,
+we define the annihilation operator $a(p)$ with domain TODO by
+\begin{equation*}
+ \parens[\big]{a(p) \psi} {}_n (k_1, \ldots, k_n)
+ = \sqrt{n+1} \, \psi_{n+1} (k_1, \ldots, k_n,p)
+\end{equation*}
+The issue arises when one looks for an adjoint to this operator.
+A formal calculation based on the adjoint identity
+\begin{equation}
+ \label{equation:adjoint-identity}
+ \innerp[\big]{\psi'}{a(p)^\dagger \psi} =
+ \innerp[\big]{a(p) \psi'}{\psi}
+\end{equation}
+leads to
+\begin{equation}
+ \label{equation:creation-operator-at-point}
+ \parens[\big]{a(p)^\dagger \psi} {}_n (k_1, \ldots, k_n)
+ = \frac{1}{\sqrt{n}} \sum_{i=1}^n \delta(p - k_i) \, \psi_{n-1} (k_1, \ldots, \widehat{k_i}, \ldots, k_n),
+\end{equation}
+where the symmetization is necessary to obtain an expression that
+at least has a chance of being a $n$ Boson state.
+However, it clearly is not a $L^2$ function.
+Given any state $\psi'$, we can
+formally calculate the inner product of $\psi'$ with~\eqref{equation:creation-operator-at-point}
+and we use the result to define the $a^\dagger(p)$
+as a mapping that assigns a number to each \emph{pair} of states.
+That is, we define the creation \enquote{operator} $a^\dagger(p)$
+to be the quadratic form
+\begin{gather*}
+ a(p)^\dagger : F \times F \longrightarrow \CC \\
+ \innerp[\big]{\psi'}{a(p)^\dagger \psi}
+ \defequal
+ \begin{multlined}[t]
+ \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sum_{i=1}^n
+ \int_M \! d\Omega_m(k_1) \cdots \widehat{d\Omega_m(k_i)} \cdots d\Omega_m(k_n) \\
+ \cdot \overline{\psi'_{n} (k_1, \ldots, \underset{i}{p}, \ldots, k_n)}
+ \psi_{n-1} (k_1, \ldots, \widehat{k_i}, \ldots, k_n).
+ \end{multlined}
+\end{gather*}
+One can verify directly that
+with this definition the adjoint identity~\eqref{equation:adjoint-identity}
+holds for all $\psi,\psi' \in F$.
+For completeness, we give a precise definition of quadratic form.
+
+\begin{definition}{Quadratic Form}{}
+ A \emph{quadratic form}\index{quadratic form} $q$ on a complex Hilbert space $\hilb{H}$ is a mapping
+ \begin{equation*}
+ q : D(q) \times D(q) \to \CC,
+ \end{equation*}
+ where $D(q)$ is a linear subspace of $\hilb{H}$, called the \emph{form domain}\index{form domain}\index{quadratic form!domain of a},
+ such that $q$ is conjugate linear in its first agrument
+ and linear in its second argument (i.e.\ sesquilinear).
+ We say that $q$ is \emph{densely defined}
+ if $D(q)$ is dense in $\hilb{H}$.
+\end{definition}
+
+Any linear operator on a complex Hilbert space $\hilb{H}$ has an
+obvious interpretation as a quadratic form on $\hilb{H}$,
+and the form domain agrees with the domain of the operator.
+The reverse construction is always possible for densely defined quadratic forms,
+but one may obtain an operator with trivial domain.
+
+\begin{definition}{Operator Associated to a Quadratic Form}{}
+ Suppose $q$ is a densely defined quadratic form on a complex Hilbert space $\hilb{H}$.
+ The linear \emph{operator associated to}\index{quadratic form!operator associated to a} $q$, denoted $q_{\mathrm{op}}$,
+ is defined on the domain
+ \begin{equation*}
+ D(q_{\mathrm{op}}) = \braces{\psi \in D(q) \mid \text{the map $q(\cdot,\psi) : D(q) \to \CC$ is bounded}},
+ \end{equation*}
+ and maps $\psi \in D(q_{\mathrm{op}})$ to the vector $q_{\mathrm{op}}\psi$ in $\hilb{H}$ satisfying
+ $q(\psi',\psi) = \innerp{\psi'}{q_{\mathrm{op}}\psi}$,
+ which exists and is unique by Riesz’s Representation Theorem.
+\end{definition}
+
+We will use the symbol $\QFequal$ between quadratic forms or operators
+to indicate their equality as quadratic forms.
+TODO(statement about domains?)
+
+
+A natural question is how the smeared operators relate to the pointwise ones.
+
+\begin{equation*}
+ a(g) \QFequal \int \overline{g(p)} a(p) \, d\Omega_m(p)
+\end{equation*}
+
+\begin{equation*}
+ a^\dagger(g) \QFequal \int g(p) a^\dagger(p) \, d\Omega_m(p)
+\end{equation*}
+We have to explain what is meant by the integral on the right hand side.
+Suppose $q(p)$ is a quadratic form on $\BosonFock{\hilb{H}}$ for each $q \in \RR^4$,
+that share a common domain $D \subset D(q(p))$,
+and $g$ is in $\hilb{H} = L^2(\RR^4,\Omega_m)$. Then we define
+a quadratic form by
+\begin{equation*}
+ \parens{\int g(p) q(p) \, d\Omega_m(p)}(\psi',\psi)
+ = \int g(p) \parens{q(p)}(\psi',\psi) \, d \Omega_m(p)
+\end{equation*}
+for all $\psi,\psi' \in D$.
+
+\begin{equation*}
+ a(p_1)^\dagger \cdots a(p_s)^\dagger a(p_{s+1}) \cdots a(p_r)
+\end{equation*}
+\begin{equation*}
+ \innerp[\big]{\psi'}{a(p_1)^\dagger \cdots a(p_s)^\dagger a(p_{s+1}) \cdots a(p_r) \psi}
+ = \innerp[\big]{a(p_1) \cdots a(p_s) \psi'}{a(p_{s+1}) \cdots a(p_r) \psi}
+\end{equation*}
+
\section{Normal Ordering}
% The Renormalization Map?
@@ -229,7 +313,7 @@ where $z,z' \in \hilb{H}$.
\begin{definition}{Infinitesimal Weyl Algebra}{}
Let $\hilb{H}$ be a complex Hilbert space.
- The \emph{infinitesimal Weyl algebra} $\WeylAlg(\hilb{H})$ over $\hilb{H}$
+ The \emph{infinitesimal Weyl algebra}\index{infinitesimal Weyl algebra} $\WeylAlg(\hilb{H})$ over $\hilb{H}$
is the noncommutative associative algebra over $\CC$
generated by the elements of $\hilb{H}$, with the relations
\begin{equation*}
@@ -275,7 +359,7 @@ The set of all monomials in $\WeylAlg$ is denoted $\Mon(\WeylAlg)$.
\prod_{i \in I\vphantom{\lbrace\rbrace}} \weylcreator(z_i)
\prod_{\mathclap{j \in \braces{1,\ldots,r} \setminus I}} \weylannihilator(z_j),
\end{gather}
- is called the \emph{normal} (or \emph{Wick}) \emph{ordering} on $\hilb{H}$.
+ is called the \emph{normal} (or \emph{Wick}) \emph{ordering}\index{normal ordering}\index{Wick ordering} on $\hilb{H}$.
A monomial $z_1 \cdots z_r \in \Mon(\WeylAlg)$ is said to be in \emph{normal} (or \emph{Wick}) \emph{order},
if $\normord{z_1 \cdots z_r} = z_1 \cdots z_r$.
\end{definition}
@@ -414,7 +498,7 @@ Let $D_1, \ldots, D_r$ be linear differential operators with constant (complex)
\prod_{\mathclap{j=s+1\vphantom{S}}}^{r} a(D^\dagger_{\sigma(j)}f)
\end{gather}
-\section{Renormalized Products of the Free Field and its Derivatives}
+\section{Renormalized Products of the Free Field and~its~Derivatives}
For any given test function $f \in \schwartz{M}$ the renormalized product $\normord{D_1 \varphi(f) \cdots D_r \varphi(f)}$
is well defined as a Fock space operator, but the product is \emph{not} an operator-valued distribution, unless $r=1$.
@@ -515,19 +599,19 @@ TODO(Note about the remaining dependence of $K$ on $f$.)
and combine all terms depending on $\sigma$ into $P_s$.
\end{myproof}
-In the special case that $D_1 = \cdots = D_n = D$ we have
+In the special case that $D_1 = \cdots = D_r = D$ we have
\begin{equation*}
P_s(p_1,\ldots,p_r) =
\frac{1}{\sqrt{2^r}} \parens*{r \atop s\vphantom{y}}
\ft{D}(p_1) \cdots \ft{D}(p_s)
\overline{\ft{D}(p_{s+1}) \cdots \ft{D}(p_r)}.
\end{equation*}
-For squares, that is $r=2$
+In particular, for squares ($r=2$) we have
\begin{equation*}
P_s(p_1,p_2) = \begin{cases}
- \tfrac{1}{2} \, \ft{D}(p_1)\ft{D}(p_2) & s=0 \\
- \phantom{\tfrac{1}{2}} \, \ft{D}(p_1)\overline{\ft{D}(p_2)} & s=1 \\
- \tfrac{1}{2} \, \overline{\ft{D}(p_1)\ft{D}(p_2)} & s=2
+ \tfrac{1}{2} \, \overline{\ft{D}(p_1)\ft{D}(p_2)} & s=0 \\
+ \phantom{\tfrac{1}{2}} \, \overline{\ft{D}(p_1)}\ft{D}(p_2) & s=1 \\
+ \tfrac{1}{2} \, \ft{D}(p_1)\ft{D}(p_2) & s=2
\end{cases}
\end{equation*}
@@ -700,35 +784,24 @@ In the following proof it will we convenient to use the abbreviation
\end{gather}
The estimates~\eqref{equation:polynomial-estimate} and~\eqref{equation:one-plus-omega-estimate} entail
\begin{equation*}
- \abs{F(k,p',p)} C_s \le
+ \abs{F(k,p',p)} \le C_s
\prod_{i=1}^{s} \omega(p_i)^{d_i-a/s}
- \prod_{j=s}^{r-s} \omega(p_j)^{d_j-a/(r-s)}
+ \prod_{j=s+1}^{r} \omega(p_j)^{d_j-a/(r-s)}
\end{equation*}
\end{myproof}
\begin{lemma}{Renormalized Product at a Point}{}
In the setting of \cref{lemma:renormalized-product-integral-representation},
+ assume that $\psi,\psi'$ are in $D^l(H)$.
+ Let $x$ be any point in $M$ and let $\delta_x \in \tempdistrib{M}$ be the Dirac distribution supported in $x$.
+ Then the limit
\begin{equation*}
\lim_{f \to \delta_x}
\innerp{\psi'\!}{\normord{D_1 \varphi(f) \cdots D_r \varphi(f)} \,\psi}
- = \int dp_1 \!\cdots dp_r
- \, K_{\psi'\!,\psi}(p_1,\ldots,p_r)
\end{equation*}
+ exists and depends continously on $x$.
\end{lemma}
-\begin{definition}{Renormalized Product at a Point}{}
- In the setting of \cref{lemma:renormalized-product-integral-representation},
- \begin{equation*}
- \normord{D_1 \varphi \cdots D_r \varphi} \ \vcentcolon \
- M \to \QF{fock}
- \end{equation*}
- \begin{equation*}
- \innerp{\psi'\!}{\normord{D_1 \varphi \cdots D_r \varphi}(x) \,\psi}
- = \int dp_1 \!\cdots dp_r
- \, K_{\psi'\!,\psi}(p_1,\ldots,p_r)
- \end{equation*}
-\end{definition}
-
\begin{proof}
According to \cref{lemma:renormalized-product-integral-representation} we have
\begin{equation*}
@@ -745,6 +818,20 @@ In the following proof it will we convenient to use the abbreviation
The Dominated Convergence Theorem implies
\end{proof}
+\begin{definition}{Renormalized Product at a Point}{}
+ In the setting of \cref{lemma:renormalized-product-integral-representation},
+ the mapping defined by
+ \begin{gather*}
+ \normord{D_1 \varphi \cdots D_r \varphi} \ \vcentcolon \
+ M \to \QF{fock} \\
+ \innerp{\psi'\!}{\normord{D_1 \varphi \cdots D_r \varphi}(x) \,\psi}
+ = \lim_{f \to \delta_x}
+ \innerp{\psi'\!}{\normord{D_1 \varphi(f) \cdots D_r \varphi(f)} \,\psi}
+ \end{gather*}
+ is called the xxx
+\end{definition}
+
+
\begin{lemma}{Renormalized Product as a QF-valued distribution}{}
In the setting of \cref{lemma:renormalized-product-integral-representation},
\begin{equation*}
@@ -759,7 +846,8 @@ In the following proof it will we convenient to use the abbreviation
\begin{lemma}{TODO}{}
Let $\varphi$ be a free quantum field.
- Let $D_1, \ldots, D_r$ be linear differential operators with constant (complex) coefficients. Then we have for all states $\psi,\psi'$
+ Let $D_1, \ldots, D_r$ be linear differential operators with constant (complex) coefficients.
+ Then we have for all states $\psi,\psi' \in D^l(H)$
\begin{multline*}
\innerp{\psi'\!}{\normord{D_1 \varphi \cdots D_r \varphi}(f) \,\psi} = \\
= \int dp_1 \!\cdots dp_r
@@ -834,13 +922,37 @@ where
\ \psi_n(k_1,\ldots,k_{n-(r-s)},p_{s+1},\ldots,p_r)
\end{multline*}
-\begin{equation*}
- A \QFequal B
-\end{equation*}
+\begin{theorem}{TODO}{}
+ Let $\varphi$ be a free quantum field.
+ Let $D_1, \ldots, D_r$ be linear differential operators with constant (complex) coefficients.
+ Then we have for all states $\psi,\psi' \in D^l(H)$
+ \begin{multline*}
+ \normord{D_1 \varphi \cdots D_r \varphi}(f) \QFequal \int dp_1 \!\cdots dp_r \sum_{s=0}^{r}
+ P_s(p_1,\ldots,p_r) \, \ft{f}(p_1 + \cdots + p_s - p_{s+1} - \cdots - p_r) \\
+ \cdot a^\dagger(p_1) \cdots a^\dagger(p_s) a(p_{s+1}) \cdots a(p_r)
+ \end{multline*}
+ as quadratic forms on $D^l(H)$, where
+ \begin{multline*}
+ \quad P_s(p_1,\ldots,p_r) =
+ \frac{1}{\sqrt{2^r}}
+ \frac{1}{s!(r-s)!}
+ \sum_{\sigma \in S_r}
+ \ft{D}_{\sigma(1)}(p_1) \cdots \ft{D}_{\sigma(s)}(p_s) \hspace{1.5cm} \\[-1.5ex]
+ \cdot \overline{\ft{D}_{\sigma(s+1)}(p_{s+1}) \cdots \ft{D}_{\sigma(r)}(p_r)}.
+ \end{multline*}
+\end{theorem}
+
+\begin{definition}{}{}
+ \begin{multline*}
+ \rho(f) \QFequal \frac{1}{4} \int dp dp' (p \cdot p' + m^2)
+ \Big\lbrack \ft{f}(p+p') a(p) a(p') + {}\\
+ + 2\ft{f}(p-p') a^\dagger(p) a(p') + \ft{f}(-p-p') a^\dagger(p) a^\dagger(p') \Big\rbrack
+ \end{multline*}
+\end{definition}
\section{Essential Selfadjointness of Renormalized Products}
-TODO
+a
%\nocite{*}