summaryrefslogtreecommitdiffstats
path: root/stresstensor.tex
diff options
context:
space:
mode:
Diffstat (limited to 'stresstensor.tex')
-rw-r--r--stresstensor.tex302
1 files changed, 246 insertions, 56 deletions
diff --git a/stresstensor.tex b/stresstensor.tex
index a4bb6fb..4c128c2 100644
--- a/stresstensor.tex
+++ b/stresstensor.tex
@@ -35,9 +35,13 @@ as a service to the reader.
\item Given a complex-valued function $f$ on $M$, we define its \emph{Fourier transform} $\ft{f}\,$ by
\begin{equation}
\label{fourier-transform}
- \hat{f}(p) = \frac{1}{(2 \pi)^2} \int_{M} e^{i p \cdot x} f(x) \, dx
+ \ft{f}(p) \defequal \int_{M} e^{i p \cdot x} f(x) \, dx
\end{equation}
- whenever the integral converges. The \emph{inverse Fourier transform} is TODO
+ whenever the integral converges. The \emph{inverse Fourier transform} is defined by
+ \begin{equation*}
+ \label{inverse-fourier-transform}
+ \ift{f}(p) \defequal \frac{1}{(2 \pi)^2} \int_{M} e^{-i p \cdot x} f(x) \, dx.
+ \end{equation*}
\item To a mathematician $\overline{\phantom{z}}$ usually means complex conjugation and ${}^*$ indicates the Hilbert adjoint of an operator,
while a physicist may read ${}^*$ as complex conjugation and
denotes the Hilbert adjoint with ${}^{\dagger}$.
@@ -85,9 +89,15 @@ as a service to the reader.
\begin{equation*}
E : \schwartz{M} \to \hilb{H}, \quad f \mapsto Ef = \left.\ft{f}\,\right\vert {X_m^+}
\end{equation*}
+ We define a $\RR$-linear mapping $\phi$ by
+ \begin{equation*}
+ \realschwartz{M} \ni f \mapsto \varphi(f) = \Phi_{\mathrm{S}}(Ef) = \frac{1}{\sqrt{2}} \parens*{a(Ef) + a(Ef)^\dagger}
+ \end{equation*}
+ This extedns to complex valued test functions $f \in \schwartz{M}$
\begin{equation*}
- \realschwartz{M} \ni f \mapsto \Phi(f) = \Phi_{\mathrm{S}}(Ef) = \frac{1}{\sqrt{2}} \parens*{a(Ef) + a(Ef)^\dagger}
+ \varphi(f) = \frac{1}{\sqrt{2}} \parens*{a(E\bar{f}) + a(Ef)^\dagger}
\end{equation*}
+ called the \emph{massive free scalar quantum field}
\item
annihilation and creation operators, $f \in \schwartz{M}$, $\psi \in \BosonFock{\hilb{H}}$
\begin{align*}
@@ -176,7 +186,7 @@ leads to
\parens[\big]{a(p)^\dagger \psi} {}_n (k_1, \ldots, k_n)
= \frac{1}{\sqrt{n}} \sum_{i=1}^n \delta(p - k_i) \, \psi_{n-1} (k_1, \ldots, \widehat{k_i}, \ldots, k_n),
\end{equation}
-where the symmetization is necessary to obtain an expression that
+where the symmetrization is necessary to obtain an expression that
at least has a chance of being a $n$ Boson state.
However, it clearly is not a $L^2$ function.
Given any state $\psi'$, we can
@@ -207,7 +217,7 @@ For completeness, we give a precise definition of quadratic form.
q : D(q) \times D(q) \to \CC,
\end{equation*}
where $D(q)$ is a linear subspace of $\hilb{H}$, called the \emph{form domain}\index{form domain}\index{quadratic form!domain of a},
- such that $q$ is conjugate linear in its first agrument
+ such that $q$ is conjugate linear in its first argument
and linear in its second argument (i.e.\ sesquilinear).
We say that $q$ is \emph{densely defined}
if $D(q)$ is dense in $\hilb{H}$.
@@ -221,13 +231,13 @@ but one may obtain an operator with trivial domain.
\begin{definition}{Operator Associated to a Quadratic Form}{}
Suppose $q$ is a densely defined quadratic form on a complex Hilbert space $\hilb{H}$.
- The linear \emph{operator associated to}\index{quadratic form!operator associated to a} $q$, denoted $q_{\mathrm{op}}$,
+ The linear \emph{operator associated to}\index{quadratic form!operator associated to a} $q$, denoted $\QFop{q}$,
is defined on the domain
\begin{equation*}
- D(q_{\mathrm{op}}) = \braces{\psi \in D(q) \mid \text{the map $q(\cdot,\psi) : D(q) \to \CC$ is bounded}},
+ D(\QFop{q}) = \braces{\psi \in D(q) \mid \text{the map $q(\cdot,\psi) \vcentcolon D(q) \to \CC$ is bounded}},
\end{equation*}
- and maps $\psi \in D(q_{\mathrm{op}})$ to the vector $q_{\mathrm{op}}\psi$ in $\hilb{H}$ satisfying
- $q(\psi',\psi) = \innerp{\psi'}{q_{\mathrm{op}}\psi}$,
+ and maps $\psi \in D(\QFop{q})$ to the vector $\QFop{q}\psi$ in $\hilb{H}$ satisfying
+ $q(\psi'\!,\psi) = \innerp{\psi'\!}{\QFop{q}\psi}$,
which exists and is unique by Riesz’s Representation Theorem.
\end{definition}
@@ -299,7 +309,7 @@ the $\alpha^{(0)},\alpha^{(1)}_i,\alpha^{(2)}_{j,k},\ldots$ are complex numbers,
of which only finitely many are nonzero,
and $e$ is a special object representing an empty product of $z$'s.
To make this mathematically precise:
-we are speaking of the noncommutative associative algebra over $\CC$
+we are speaking of the non-commutative associative algebra over $\CC$
freely generated by the elements of $\hilb{H}$.
The unit of the algebra is $e$.
@@ -314,7 +324,7 @@ where $z,z' \in \hilb{H}$.
\begin{definition}{Infinitesimal Weyl Algebra}{}
Let $\hilb{H}$ be a complex Hilbert space.
The \emph{infinitesimal Weyl algebra}\index{infinitesimal Weyl algebra} $\WeylAlg(\hilb{H})$ over $\hilb{H}$
- is the noncommutative associative algebra over $\CC$
+ is the non-commutative associative algebra over $\CC$
generated by the elements of $\hilb{H}$, with the relations
\begin{equation*}
zz' - z'z = i \Imag \innerp{z}{z'} \, e \qquad z,z' \in \hilb{H},
@@ -371,10 +381,10 @@ the formula makes sense even for $r=0$ and asserts that $\normord{e} = e$.
The cases $r=1$ and $r=2$ read
\begin{align*}
\normord{z} &=
- \frac{1}{\sqrt{2}} \parens[\big]{\weylannihilator(z) + \weylcreator(z)} = z \\
+ \frac{1}{\sqrt{2}} \parens[\big]{\weylannihilator(z) + \weylcreator(z)} = z, \\
\normord{z_1 z_2} &= \frac{1}{2}
- \parens[\big]{\weylannihilator(z_1) \weylannihilator(z_2) + \weylannihilator(z_1) \weylcreator(z_2)
- + \weylcreator(z_1) \weylannihilator(z_2) + \weylcreator(z_1) \weylcreator(z_2) }
+ \parens[\big]{ \weylannihilator(z_1) \weylannihilator(z_2) + \weylcreator(z_1) \weylannihilator(z_2)
+ + \weylcreator(z_2) \weylannihilator(z_1) + \weylcreator(z_1) \weylcreator(z_2) }.
\end{align*}
This suggests that the normally ordered product $\normord{z_1 \!\cdots z_r}$
is symmetric in $z_1,\ldots,z_n$. This is in fact true, and becomes evident
@@ -470,20 +480,19 @@ and may be obtained via integration by parts.
Naturally, we now define the \emph{distributional derivative} of the field by
\begin{equation*}
- D \varphi(f) = \varphi(D^{\dagger} f) \qquad \forall f \in \schwartz{\RR^d}
+ D \varphi(f) = \varphi(D^{\dagger} f) \qquad \forall f \in \schwartz{\RR^4}
\end{equation*}
-As one expects, $D\varphi$ is an operator-valued tempered distribution on $M=\RR^d$.
-TODO
+As one expects, $D\varphi$ is an operator-valued tempered distribution on $M=\RR^4$.
+In terms of creation and annihilation operators we have
\begin{equation}
\label{derivative-free-field}
- D \varphi(f) = \frac{1}{\sqrt{2}} \parens*{a(ED^{\dagger}f)^{\dagger} + a(ED^{\dagger}f)}
+ D \varphi(f) = \frac{1}{\sqrt{2}} \parens*{a(ED^{\dagger}f)^{\dagger} + a(E\overline{D^{\dagger}f})}.
\end{equation}
-
-
-The operator corresponding to $D$ in Fourier space is the multiplication operator
+In Fourier space the operator $D^\dagger$ corresponds to muliplication with the polynomial
\begin{equation*}
- -i \sum_{\alpha} a_{\alpha} p_0^{\alpha_0} (-p_1)^{\alpha_1} (-p_2)^{\alpha_2} (-p_3)^{\alpha_3}
+ \ft{D}(p) \defequal \sum_{\alpha} i^{\abs{\alpha}} a_{\alpha} (+p^0)^{\alpha_0} (-p^1)^{\alpha_1} (-p^2)^{\alpha_2} (-p^3)^{\alpha_3}
\end{equation*}
+If $D=\partial^{\mu}$, then $\ft{D}(p) = i @ p_{\!\mu}$, were the potential sign is concealed by lowering the index.
Let $D_1, \ldots, D_r$ be linear differential operators with constant (complex) coefficients.
@@ -494,8 +503,8 @@ Let $D_1, \ldots, D_r$ be linear differential operators with constant (complex)
\sum_{\sigma \in S_r}
\sum_{s=0\vphantom{S}}^{r}
\frac{1}{s!(r-s)!}
- \prod_{i=1\vphantom{S}}^{s} a^\dagger(D^\dagger_{\sigma(i)}f)
- \prod_{\mathclap{j=s+1\vphantom{S}}}^{r} a(D^\dagger_{\sigma(j)}f)
+ \prod_{i=1\vphantom{S}}^{s} a^\dagger(ED^\dagger_{\sigma(i)}f)
+ \prod_{\mathclap{j=s+1\vphantom{S}}}^{r} a(E\overline{D^\dagger_{\sigma(j)}f})
\end{gather}
\section{Renormalized Products of the Free Field and~its~Derivatives}
@@ -516,7 +525,7 @@ this approach incurs significant technical difficulties.
\begin{lemma}{Integral Representation of the Renormalized Product}{renormalized-product-integral-representation}
Let $\varphi$ be the free scalar quantum field with mass parameter $m > 0$.
Let $D_1, \ldots, D_r$ be linear differential operators with constant (complex) coefficients.
- Then, for arbitrary Schwartz functions $f \in \schwartz{M}$ and Fock states $\psi,\psi' \in \BosonFock{L^2(X_m^+,d\Omega_m)}$,
+ Then, for arbitrary Schwartz functions $f \in \realschwartz{M}$ and Fock states $\psi,\psi' \in \BosonFock{L^2(X_m^+,d\Omega_m)}$,
we have
\begin{equation*}
\innerp{\psi'\!}{\normord{D_1 \varphi(f) \cdots D_r \varphi(f)} \,\psi} =
@@ -552,7 +561,32 @@ this approach incurs significant technical difficulties.
\end{multline*}
\end{lemma}
-TODO(Note about the remaining dependence of $K$ on $f$.)
+Note that $K$ has a remaining dependence on $f$ via $\chi$
+even thogh the notation does not indicate this.
+This is made explicit in the alternative integral representation
+ \begin{equation}
+ \label{equation:alternative-integral-representation}
+ \begin{multlined}
+ \innerp{\psi'\!}{\normord{D_1 \varphi(f) \cdots D_r \varphi(f)} \,\psi} =\\
+ \hspace{1cm} \int dp_1 \!\cdots dp_r
+ \sum_{s=0}^{r}
+ \, \ft{f}(p_1) \cdots\! \ft{f}(p_s)
+ \, \overline{\ft{f}(p_{s+1}) \cdots\! \ft{f}(p_r)}
+ \, \tilde{K}^s_{\psi'\!,\psi}(p_1,\ldots,p_r)
+ \end{multlined}
+ \end{equation}
+ where
+ \begin{multline*}
+ \tilde{K}^s_{\psi'\!,\psi}(p_1,\ldots,p_r) =
+ P_s(p_1,\ldots,p_r)
+ \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
+ \delta_{m-s}^{n-(r-s)} \\
+ \cdot \sqrt{m(m-1) \cdots (m-s+1)} \sqrt{n(n-1) \cdots (n-(r-s)+1)} \\
+ \cdot \int dk_1 \cdots dk_{m-s}
+ \ \overline{\psi'_m(k_1,\ldots,k_{m-s},p_1,\ldots,p_s)}
+ \ \psi_n(k_1,\ldots,k_{n-(r-s)},p_{s+1},\ldots,p_r).
+ \end{multline*}
+ This will be more convenient for xxx
\begin{myproof}[lemma:renormalized-product-integral-representation]
From equation~\eqref{equation:renormalized-product},
@@ -617,24 +651,30 @@ In particular, for squares ($r=2$) we have
The following assertion is key to realizing the idea of taking the limit $f \to \delta_x$.
-\begin{lemma}{}{integral-kernel-h-bound}
+\begin{lemma}{H-bounds for the Integral Kernel}{integral-kernel-h-bound}
In the setting of \cref{lemma:renormalized-product-integral-representation},
there exist a constant $C$, and a positive integer $l$,
- such that for arbitrary states $\psi,\psi' \in \BosonFock{\hilb{H}}$,
- and test functions $f \in \schwartz{M}$,
+ such that for arbitrary test functions $f \in \schwartz{M}$
+ and states $\psi,\psi' \in \Domain{H^l}$,
the function $K_{\psi'\!,\psi}$ is integrable (that is, $L^1$)
and satisfies the $H$-bound
\begin{equation*}
\norm{K_{\psi'\!,\psi}}_1 \le
C \norm{(1+H)^l \psi'} \norm{(1+H)^l \psi}.
\end{equation*}
+ More specifically, it is sufficient to choose $l > rd + r/2$,
+ where $d$ is the highest order of differentiation occuring in $D_1, \ldots, D_r$.
\end{lemma}
-The Hamilton operator $H$ acts on $n$-particle states $\psi_n$
-by multiplication with $\omega(p_1)$
-In the following proof it will we convenient to use the abbreviation
+The Hamilton operator $H$ acts on $n$-particle states $\psi_n$ as follows:
+\begin{gather*}
+ H \psi_n(p_1,\ldots,p_n) = \parens[\big]{\omega(p_1) + \cdots + \omega(p_n)} \psi_n(p_1,\ldots,p_n) \\
+ \shortintertext{where}
+ \omega(p) = \omega(\symbfit{p}) = \sqrt{m^2 + \abs{\symbfit{p}}^2} = \sqrt{m^2 + (p^1)^2 + (p^2)^2 + (p^3)^2}.
+\end{gather*}
+In the following proof it will be convenient to use the abbreviation
\begin{equation*}
- \omega(p_1,\ldots,p_s) = \omega(p_1) + \cdots + \omega(p_s)
+ \omega(p_1,\ldots,p_s) \defequal \omega(p_1) + \cdots + \omega(p_n).
\end{equation*}
\begin{myproof}[lemma:integral-kernel-h-bound]
@@ -778,28 +818,71 @@ In the following proof it will we convenient to use the abbreviation
\le \frac{\omega(p_1) + \cdots + \omega(p_s)}{s}
\le \omega(p') \le 1 + \omega(k,p'), \nonumber\\
\shortintertext{hence}
- \label{equation:one-plus-omega-estimate}
+ \label{equation:one-plus-omega-estimate1}
\parens[\big]{1+\omega(k,p')} {}^{-a}
- \le \parens[\big]{\omega(p_1) \cdots \omega(p_s)} {}^{-a/s}.
+ \le \parens[\big]{\omega(p_1) \cdots \omega(p_s)} {}^{-a/s}, \\
+ \shortintertext{and similarly}
+ \label{equation:one-plus-omega-estimate2}
+ \parens[\big]{1+\omega(k,p)} {}^{-a}
+ \le \parens[\big]{\omega(p_1) \cdots \omega(p_{r-s})} {}^{-a/(r-s)}.
\end{gather}
- The estimates~\eqref{equation:polynomial-estimate} and~\eqref{equation:one-plus-omega-estimate} entail
+ The estimates~\eqref{equation:polynomial-estimate},~\eqref{equation:one-plus-omega-estimate1} and~\eqref{equation:one-plus-omega-estimate2} entail
\begin{equation*}
\abs{F(k,p',p)} \le C_s
\prod_{i=1}^{s} \omega(p_i)^{d_i-a/s}
- \prod_{j=s+1}^{r} \omega(p_j)^{d_j-a/(r-s)}
+ \prod_{j=s+1}^{r} \omega(p_j)^{d_j-a/(r-s)}.
\end{equation*}
+ Since the right hand side does not depend on $k$, and the $p$-variables are separated,
+ the problem reduces to proving that
+ \begin{equation}
+ \label{equation:integral-finite}
+ \int \omega(q)^{-2b} \,d\Omega(q) < \infty
+ \end{equation}
+ for $b$ large enough.
+ Recall that $d \Omega(q) = \omega(q)^{-1} d^3 \symbfit{q}$.
+ By transformation to spherical coordinates, we find that~\eqref{equation:integral-finite}
+ is equivalent to
+ \begin{equation*}
+ \int \frac{r^2}{(m^2 + r^2)^{b+1/2}} \,dr < \infty
+ \end{equation*}
+ It it well known that this holds for $b > 1$.
+ $a > r d$
+
+ \begin{equation}
+ \label{equation:intermediate-result}
+ \norm{K_{\psi'\!,\psi}}_1 \le
+ \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
+ \sum_{s=0}^{r} \delta_{m-s}^{n-(r-s)} C_s
+ \underbracket{\norm{(1+H)^l \psi'_m}_2}_{a'_m}
+ \underbracket{\norm{(1+H)^l \psi_n}_2}_{a_n}
+ \end{equation}
+ We introduce auxiliary variables $a'_m, a_n$ as shown above, and for convenience set $a_n = 0$ whenever $n < 0$.
+ Using this, we rewrite the right hand side of~\eqref{equation:intermediate-result}
+ and apply the Cauchy-Schwarz Inequality for sequences as follows:
+ \begin{equation*}
+ \sum_{s=0}^{r} C_s \sum_{m = 0}^{\infty} a'_m \cdot a_{m+r-2s} \le
+ \sum_{s=0}^{r} C_s \sqrt{\sum_{m=0}^{\infty} a'^2_m \sum_{n=0}^{\infty} a^2_n}
+ \end{equation*}
+ To complete the proof, observe that
+ \begin{equation*}
+ \norm{(1+H)^l \psi'}_2 =
+ \sqrt{\sum_{m=0}^{\infty} \norm{(1+H)^l \psi'_m}_2^2} =
+ \sqrt{\sum_{m=0}^{\infty} a'^2_m},
+ \end{equation*}
+ and similar for $\psi$, by definition of the inner prouct
+ and because $((1+H)^l \psi')_m = (1+H)^l \psi'_m$ for all $m$.
\end{myproof}
\begin{lemma}{Renormalized Product at a Point}{}
In the setting of \cref{lemma:renormalized-product-integral-representation},
- assume that $\psi,\psi'$ are in $D^l(H)$.
+ assume that $\psi,\psi'$ are in $\Domain{H^l}$.
Let $x$ be any point in $M$ and let $\delta_x \in \tempdistrib{M}$ be the Dirac distribution supported in $x$.
Then the limit
\begin{equation*}
\lim_{f \to \delta_x}
\innerp{\psi'\!}{\normord{D_1 \varphi(f) \cdots D_r \varphi(f)} \,\psi}
\end{equation*}
- exists and depends continously on $x$.
+ exists and depends continuously on $x$.
\end{lemma}
\begin{proof}
@@ -813,8 +896,22 @@ In the following proof it will we convenient to use the abbreviation
The integrand is dominated by the function $\abs{K_{\psi'\!,\psi}(p_1,\ldots,p_r)}$,
which has finite integral as it is $L^1$
by \cref{lemma:integral-kernel-h-bound}.
+
Moreover, the integrand converges pointwise to $K_{\psi'\!,\psi}(p_1,\ldots,p_r)$, since $\ft{f} \to 1$ when $f \to \delta_x$.
TODO(With of choice of FT constants, $\ft{f} \to 1/(2\pi)^2$. Change here or change def?)
+
+ Since the Fourier transformation of tempered distribution
+ is a continuous mapping $\tempdistribnoarg \to \tempdistribnoarg$,
+ we have $\ft{f} \to \FT{\delta_x}$ whenever $f \to \delta_x$ in the topology of $\tempdistribnoarg$.
+ Recall that $\ft{\delta} = 1$, and thus $\FT{\delta_x}(p) = e^{ix \cdot p}$ for all $p \in M$.
+ This shows that the integrand converges pointwise to
+ \begin{equation*}
+ \sum_{s=0}^r
+ e^{ix \cdot (p_1 + \cdots + p_s)}
+ e^{-ix \cdot (p_{s+1} + \cdots + p_r)}
+ \tilde{K}_{\psi'\!,\psi}(p_1,\ldots,p_r)
+ \end{equation*}
+
The Dominated Convergence Theorem implies
\end{proof}
@@ -847,20 +944,21 @@ In the following proof it will we convenient to use the abbreviation
\begin{lemma}{TODO}{}
Let $\varphi$ be a free quantum field.
Let $D_1, \ldots, D_r$ be linear differential operators with constant (complex) coefficients.
- Then we have for all states $\psi,\psi' \in D^l(H)$
+ Suppose that $l$ is a positive integer large enough to satisfy the
+ Then we have for all states $\psi,\psi' \in \Domain{H^l}$
\begin{multline*}
\innerp{\psi'\!}{\normord{D_1 \varphi \cdots D_r \varphi}(f) \,\psi} = \\
= \int dp_1 \!\cdots dp_r
\sum_{s=0}^{r}
\, \ft{f}(p_1 + \cdots + p_s - p_{s+1} - \cdots - p_r)
- \, L_{\psi'\!,\psi}^{s}(p_1,\ldots,p_r)
+ \, \tilde{K}_{\psi'\!,\psi}^{s}(p_1,\ldots,p_r)
\end{multline*}
where
\begin{multline*}
- L_{\psi'\!,\psi}^{s}(p_1,\ldots,p_r) =
+ \tilde{K}_{\psi'\!,\psi}^{s}(p_1,\ldots,p_r) =
+ P_s(p_1,\ldots,p_r)
\sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
- \delta_{m-s}^{n-(r-s)}
- \ P_s(p_1,\ldots,p_r) \\
+ \delta_{m-s}^{n-(r-s)} \\
\cdot \sqrt{m(m-1) \cdots (m-s+1)} \sqrt{n(n-1) \cdots (n-(r-s)+1)} \\
\cdot \int dk_1 \cdots dk_{m-s}
\ \overline{\psi'_m(k_1,\ldots,k_{m-s},p_1,\ldots,p_s)}
@@ -869,10 +967,12 @@ In the following proof it will we convenient to use the abbreviation
and $P_s(p_1,\ldots,p_r)$ is defined as before.
\end{lemma}
-%\[
- %f(T), f\left( T \right),
- %\int_{a}^{b} f\left( x \right) d x, \frac{1}{T},
-%\]
+\begin{proof}
+ a
+\end{proof}
+
+
+\section{Definition of the Stress Tensor}
In the theory of a real scalar field $\phi$ of mass $m$,
the Lagrangian density of the Klein-Gordon action is given by
@@ -890,7 +990,7 @@ Raising the index $\nu$ and inserting \cref{lagrangian-density} yields
\end{equation*}
The \emph{energy density}:
\begin{equation*}
- \rho = T^{00} = \frac{1}{2} \parens*{\sum_{\mu=0}^{3} (\partial^{\mu}\phi)^2 + m^2 \phi^2}
+ \energydensity = T^{00} = \frac{1}{2} \parens*{\sum_{\mu=0}^{3} (\partial^{\mu}\phi)^2 + m^2 \phi^2}
\end{equation*}
The discussion in the previous section enables us to define
the \emph{renormalized stress-energy tensor} of a free scalar field $\varphi$ by
@@ -900,11 +1000,11 @@ the \emph{renormalized stress-energy tensor} of a free scalar field $\varphi$ by
and this is a quadratic form.
In particular, the energy density is
\begin{equation*}
- \rho = \frac{1}{2} \sum_{\mu=0}^{3} \normord{(\partial^{\mu}\phi)^2} + \frac{1}{2} m^2 \normord{\phi^2}
+ \energydensity = \frac{1}{2} \sum_{\mu=0}^{3} \normord{(\partial^{\mu}\varphi)^2} + \frac{1}{2} m^2 \normord{\varphi^2}
\end{equation*}
\begin{multline*}
- \innerp{\psi'\!}{\rho(f) \,\psi} = \\
+ \innerp{\psi'\!}{\energydensity(f) \,\psi} = \\
= \int dp_1 dp_2
\parens{p_1^{\mu} p_2^{\mu} + m^2}
\sum_{s=0}^{r} (-1)^{s+1}
@@ -925,13 +1025,13 @@ where
\begin{theorem}{TODO}{}
Let $\varphi$ be a free quantum field.
Let $D_1, \ldots, D_r$ be linear differential operators with constant (complex) coefficients.
- Then we have for all states $\psi,\psi' \in D^l(H)$
+ Then we have for all test functions $f \in \schwartz{M}$
\begin{multline*}
\normord{D_1 \varphi \cdots D_r \varphi}(f) \QFequal \int dp_1 \!\cdots dp_r \sum_{s=0}^{r}
P_s(p_1,\ldots,p_r) \, \ft{f}(p_1 + \cdots + p_s - p_{s+1} - \cdots - p_r) \\
\cdot a^\dagger(p_1) \cdots a^\dagger(p_s) a(p_{s+1}) \cdots a(p_r)
\end{multline*}
- as quadratic forms on $D^l(H)$, where
+ as quadratic forms on $\Domain{H^l}$, where
\begin{multline*}
\quad P_s(p_1,\ldots,p_r) =
\frac{1}{\sqrt{2^r}}
@@ -944,17 +1044,107 @@ where
\begin{definition}{}{}
\begin{multline*}
- \rho(f) \QFequal \frac{1}{4} \int dp dp' (p \cdot p' + m^2)
+ \energydensity(f) \QFequal \frac{1}{4} \int dp dp' (p \cdot p' + m^2)
\Big\lbrack \ft{f}(p+p') a(p) a(p') + {}\\
+ 2\ft{f}(p-p') a^\dagger(p) a(p') + \ft{f}(-p-p') a^\dagger(p) a^\dagger(p') \Big\rbrack
\end{multline*}
\end{definition}
+\begin{equation*}
+ \bar{p} := \eta p = (p^0,-\symbfit{p})
+\end{equation*}
+
+\begin{proposition}{}{}
+ \begin{multline*}
+ \innerp{\psi'}{\energydensity(f) \psi} =
+ \frac{1}{4} \int dp dp'
+ (\bar{p} \cdot p' + m^2)
+ \bracks[\big]{2 \ft{f}(p - p') L^1_{\psi'\!,\psi}(p,p')} \\
+ + (-\bar{p} \cdot p' + m^2)
+ \bracks[\big]{\ft{f}(- p - p') L^0_{\psi'\!,\psi}(p,p') + \ft{f}(p + p') L^2_{\psi'\!,\psi}(p,p')}
+ \end{multline*}
+\end{proposition}
+
+\begin{proposition}{}{}
+ \begin{multline*}
+ \energydensity(f) \QFequal \frac{1}{4} \int dp dp'
+ (m^2 + \bar{p} \cdot p')
+ \bracks[\Big]{2\ft{f}(p-p') a^\dagger(p) a(p')} \\
+ + (m^2 - \bar{p} \cdot p')
+ \bracks[\Big]{\ft{f}(p+p') a(p) a(p') + \ft{f}(-p-p') a^\dagger(p) a^\dagger(p')}
+ \end{multline*}
+\end{proposition}
+
+\begin{proposition}{}{}
+ The Fock vaccum $\fockvaccum$ lies in the domain of $\energydensity(f)\QFop{}$
+ for all test functions $f \in \schwartz{M}$
+ and $\energydensity(f)\QFop{}\fockvaccum$ is the vector $\psi$ defined by
+ \begin{equation*}
+ \psi_2(p,p') = \frac{\sqrt{2}}{4} (m^2 - \bar{p} \cdot p') \ft{f}(-p-p')
+ \end{equation*}
+ and $\psi_n \equiv 0$ for $n \ne 2$.
+\end{proposition}
+
+\begin{equation*}
+ \energydensity(f) \Omega = ?
+\end{equation*}
+
\section{Essential Selfadjointness of Renormalized Products}
-a
+\begin{lemma}{H-Bounds for the Renormalized Product}{}
+ \begin{equation*}
+ \abs{\innerp{\psi'\!}{\normord{D_1 \varphi \cdots D_r \varphi}(f)\psi}} \le
+ C \norm{(I+H)^l \psi} \norm{(I+H)^l \psi'}
+ \end{equation*}
+\end{lemma}
-%\nocite{*}
+\begin{proof}
+ This proof is nearly identical to that of \cref{lemma:integral-kernel-h-bound}
+ and we will only cover the differences.
+ \begin{equation*}
+ \begin{multlined}[c]
+ \abs{\innerp{\psi'\!}{\normord{D_1 \varphi \cdots D_r \varphi}(f)\psi}} \le
+ \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{s=0}^{r}
+ \delta_{m-s}^{n-(r-s)} \\
+ \hspace{2.5cm} \cdot
+ \int \!dk \int \!dp'\! \int \!dp \, \abs*{F(k,p',p) \, G'(k,p') \, G(k,p)},
+ \end{multlined}
+ \end{equation*}
+ where
+ \begin{multline}
+ F(k,p',p) = \parens[\big]{1+\omega(k,p')} {}^{-a} \parens[\big]{1+\omega(k,p)} {}^{-a} P_s(p',p) \\
+ \cdot \ft{f}(p_1 + \cdots + p_s - p_{s+1} - \cdots - p_r)
+ \end{multline}
+ and $G$ and $G'$ are defined as before.
+ All we have to do, is verifying that
+ \begin{equation*}
+ \sup_k \norm{F(k,\cdot,\cdot)}_2 < \infty
+ \end{equation*}
+ for a sufficiently large integer $a$.
+ Then we obtain the desired $H$-bound with $l=a+r/2$.
+
+ Recall that the Schwartz class is preserved by Fourier transform, translation and multiplication with polynomials.
+ Moreover, it is well known that Schwartz functions are square-integrable with repect to the Lorentz invariant measure on the mass shell.
+ Hence,
+ \begin{equation*}
+ \int dp_1 \abs{\ft{f}(p_1 + \cdots + p_s - p_{s+1} - \cdots - p_r)}^2
+ \end{equation*}
+ is bounded by a constant independent of $p_2,\ldots,p_r$.
+\end{proof}
+
+\section{Covariance}
+
+\begin{equation*}
+ f_g(x) \defequal f(g^{-1} x) \qquad
+ x \in M, \quad g \in \ProperOrthochronousPoincareGroup.
+\end{equation*}
+
+\begin{theorem}{Covariance}{covariance-renormalized-product}
+ \begin{equation*}
+ U(g) \,\normord{D_1 \varphi \cdots D_r \varphi}(f)\, U(g)^{-1}
+ = \normord{D_1 \varphi \cdots D_r \varphi}(f_g)
+ \end{equation*}
+\end{theorem}
\chapterbib
\cleardoublepage