summaryrefslogtreecommitdiffstats
path: root/much.tex
blob: 58aeab3ac412c71f45a333a15ef4ed84ab5f3689 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
\chapter{A quantum energy inequality involving local modular data}


\cite{Much2022}

\begin{equation*}
  \innerp{\psi}{\energydensity(f)\psi} \ge
  - \epsilon - \norm{\smash[b]{\Delta}_{\smash[t]{\sharp}}^{-1/2} \ft{g}_{\lambda}(K_{\raisebox{5pt}{\footnotesize$\sharp$}}) \energydensity(f) \fockvaccum}
\end{equation*}


\section{Misc}

\todo{Put this somwhere else.}

A \emph{Lorentz transform} is a linear automorphism of Minkowski spacetime
which preserves the Lorentz bilinear form.
Lorentz transforms are usually represented by (real) $4 \times 4$ matrices,
with respect to the standard basis.
the \emph{Lorentz group} $\FullLorentzGroup$.
\begin{equation*}
  \FullPoincareGroup = \RR^4 \ltimes \FullLorentzGroup
\end{equation*}

The relativistic transformation law for one-particle states is given by
\begin{equation*}
  \parens[\big]{U(a,\Lambda) \psi}(p) = e^{ia \cdot p} \psi(\Lambda^{-1} p),
  \quad \psi \in \hilb{H}, (a,\Lambda) \in \ProperOrthochronousPoincareGroup.
\end{equation*}
The mapping $(a,\Lambda) \mapsto U(a,\Lambda)$ is a (irreducible) unitary representation
of the proper orthochronous Poincaré group $\ProperOrthochronousPoincareGroup$
on the one-particle Hilbert space.
By applying any of the second quantization functors we obtain a representation on the multi-particle state space.
\begin{equation*}
  \parens[\big]{U(a,\Lambda) \psi}{}_n(p_1,\ldots,p_n) = e^{ia \cdot (p_1 + \cdots + p_n)} \psi_n(\Lambda^{-1} p_1, \ldots, \Lambda^{-1} p_n),
\end{equation*}

Poincaré covariance
\begin{equation}
  \label{equation:poincare-covariance-local-algebras}
  U(g) \localalg{\spacetimeregion{O}} U(g)^* = \localalg{g\spacetimeregion{O}}
  \qquad g \in \ProperOrthochronousPoincareGroup
\end{equation}

\begin{definition}{Von Neumann Algebra of Local Observables}{}
  \begin{equation*}
    \localalg{\spacetimeregion{O}} = \braces{b(\varphi(f)) \mid b, f \in \realschwartz{M}, \supp f \subset \spacetimeregion{O}}''
  \end{equation*}
\end{definition}

\section{Basic Concepts of Modular Theory}
\index{modular!theory}

If $\hilb{H}$ is a Hilbert space
we shall denote the $C^*$-algebra of all bounded linear operators on $\hilb{H}$ by $B(\hilb{H})$.

\begin{definition}{Cyclic and Separating Vectors}{}
  Suppose $\hilb{H}$ is a Hilbert space and $\mathcal{A}$ is a $C^*$-subalgebra of $B(\hilb{H})$.
  A vector $\Omega \in \hilb{H}$ is called
  \begin{itemize}
    \item \emph{cyclic}\index{cyclic vector} for $\mathcal{A}$ if the vector set $\mathcal{A} \Omega$ is dense in $\hilb{H}$.
    \item \emph{separating}\index{separating vector} for $\mathcal{A}$ if the map $A \mapsto A \Omega$ from $\mathcal{A}$ into $\hilb{H}$ is injective.
  \end{itemize}
\end{definition}
Occasionally, a vector that is both cyclic and separating is called \emph{standard}\index{standard vector}.

Recall that the commutant of a set $\mathcal{S} \subset B(\hilb{H})$ of operators
is defined as the set of all operators $T \in B(\hilb{H})$ which commute with all operators $S$ in $\mathcal{S}$.
We shall denote the commutant of $\mathcal{S}$ by $\mathcal{S}'$.\nomenclature{$\mathcal{A}'$}{commutant of $\mathcal{A}$}

\begin{proposition}{}{cyclic-separating}
  \begin{enumerate}[label=(\roman*),nosep,leftmargin=*,widest=ii]
    \item A vector is cyclic for $\mathcal{A}$ if and only if it is separating for $\mathcal{A}'$.
    \item If $\vNa{M}$ is a von Neumann algebra, then a vector is cyclic and separating for $\vNa{M}$
  if and only if it is cyclic and separating for $\vNa{M}'$.
  \end{enumerate}
\end{proposition}

\begin{proof}
  \todo{xxx}
  The second assertion directly follows from the first and the fact that $\vNa{M}'' = \vNa{M}$.
\end{proof}

If $\Omega$ is separating for $\mathcal{A}$,
then every element of $\mathcal{A}\Omega$ is of the form $A\Omega$
with a unique $A \in \mathcal{A}$.
This allows us to define an (anti-linear) operator $S_0$ in $\hilb{H}$ with domain $\mathcal{A}\Omega$ by
\begin{equation}
  \label{equation:definition-s0}
  \quad S_0 A\Omega \defequal S_0 A^*\Omega \qquad A \in \mathcal{A}.
\end{equation}
The operator $S_0$ is densely defined if and only if $\Omega$ is cyclic for $\mathcal{A}$.
Since the $*$-operation on $\mathcal{A}$ is involutive,
the range of $S_0$ coincides with its domain.

\begin{lemma}{}{}
  If $\Omega$ is a cyclic and separating vector for a von Neumann algebra $\mathcal{A}$,
  then the operator $S_0$ defined by~\eqref{equation:definition-s0} is closable.
\end{lemma}
\begin{proof}
  By \cref{proposition:cyclic-separating},
  $\Omega$ is also cyclic and separating for the commutant $\vNa{A}'$.
  Hence we may, analogously to $S_0$,
  define another anti-linear operator $F_0$ in $\hilb{H}$ with dense domain $\mathcal{A}' \Omega$ by
  \begin{equation*}
    \quad F_0 B\Omega \defequal F_0 B^*\Omega \qquad B \in \mathcal{A'}.
  \end{equation*}
  By definition of $S_0$ and $F_0$ we have for every $A \in \mathcal{A}$ and $B \in \mathcal{A}'$
  \begin{equation*}
    \innerp{S_0 A \Omega}{B \Omega} = 
    \innerp{\Omega}{AB \Omega} = 
    \innerp{\Omega}{BA \Omega} = 
    \innerp{F_0 B\Omega}{A \Omega}.
  \end{equation*}
  This adjoint identity establishes that $S_0 \subset F_0^*$.
  (The \enquote{twisted} appearance of the identity is correct,
  since it involves anti-linear operators on both sides.)
  The Hilbert adjoint $F_0^*$ of $F_0$ is closed.
  Hence, we have shown that $S_0$ has a closed extension, and
  this implies that $S_0$ is closable.
\end{proof}

\begin{definition}{Tomita operator}{}
  Suppose $\Omega$ is a cyclic and separating vector for a von Neumann algebra $\mathcal{A}$.
  The closure $S = \operatorclosure{S_0}$
  of the operator $S_0$ defined on $\mathcal{A}\Omega$ by
  $S_0 A\Omega = S_0 A^*\Omega$
  for $A \in \mathcal{A}$
  is called the
  \emph{Tomita operator}\index{Tomita operator}\index{operator!Tomita}\nomenclature{$S$}{Tomita operator}
  for the pair $(\mathcal{A},\Omega)$.
\end{definition}

It is a well-known fact that closed operators can be decomposed
in a similar fashion to the polar coordinate representation $z = e^{i\arg z} \abs{z}$
of a complex number.
We state the theorem in its somewhat uncommon variant for anti-linear operators,
as this is our only use case.

\begin{theorem}{Polar Decomposition for Anti-Linear Closed Operators}{polar-decomposition}
  \index{polar decomposition}
  Let $T$ be an arbitrary closed anti-linear operator in a Hilbert space $\hilb{H}$.
  Then there exist
  a positive selfadjoint linear operator $\abs{T}$ and
  a partial anti-linear isometry $U$
  such that
  \begin{equation*}
    T = U \abs{T} \qquad \bracks[\big]{\text{in particular, $\Domain{T} = \Domain{\abs{T}}$}}.
  \end{equation*}
  The operators $U$ and $\abs{T}$ are uniquely determined given the additional conditions
  \begin{equation*}
    \ker\abs{T} = \ker T \qquad
    (\ker U)^\perp = (\ker T)^\perp \qquad
    \ran U = \overline{\ran T}.
  \end{equation*}
\end{theorem}

Proofs of this statement are contained in~\cite{ReedSimon1} and~\cite{Schmüdgen2012}.
When we speak of \emph{the} polar composition we tacitly assume that the additional conditions
ensuring uniqueness are satisfied.

Now we are able to introduce the fundamental objects of modular theory.

\begin{definition}{Modular Conjugation, Modular Operator}{}
  Suppose $\vNa{M}$ is a von Neumann algebra acting on a Hilbert space $\hilb{H}$,
  and suppose $\Omega \in \hilb{H}$ is a cyclic and separating vector for $\vNa{M}$.
  Let $S$ be the Tomita operator for $(\vNa{M},\Omega)$ and let
  \begin{equation*}
    S = J \Delta^{1/2}
  \end{equation*}
  be its polar decomposition.
  The anti-unitary operator $J$ is called
  \emph{modular conjugation}\index{modular!conjugation}\nomenclature{$J$}{modular conjugation}.
  The positive selfadjoint operator $\Delta$ is called
  \emph{modular operator}\index{modular!operator}\index{operator!modular}\nomenclature{$\Delta$}{modular operator}.
  The pair $(J,\Delta)$ is said to be the \emph{modular data}\index{modular!data}\index{modular!objects} associated to
  the pair $(\vNa{M},\Omega)$.
\end{definition}

\todo{clarify why $J$ is anti-unitary}

\begin{definition}{Modular Group}{}
  Adopt the notation of the foregoing definition.
  The mapping $\RR \ni t \mapsto \Delta^{it}$ is called the \emph{modular group}\index{modular!group} associated to 
  $(\vNa{M},\Omega)$.
\end{definition}

The modular group is a strongly continuous one-parameter unitary group on $\hilb{H}$.

\newpage

\begin{proposition}{}{modular-data-unitary}
  Suppose $\vNa{M}$ is a von Neumann algebra acting on a Hilbert space $\hilb{H}$.
  Let $U$ be a unitary operator on $\hilb{H}$.
  Then $U\vNa{M}U^*$ is a von Neumann algebra on $\hilb{H}$.
  Suppose further that $\Omega \in \hilb{H}$ is a cyclic and separating vector for $\vNa{M}$.
  Then $U \Omega$ is cyclic and separating for $U\vNa{M}U^*$.
  Let $(J,\Delta)$ be the modular data associated to $(\vNa{M},\Omega)$.
  Then $(UJU^*,U{\Delta}U^*)$ is the modular data associated to $(U\vNa{M}U^*,U\Omega)$.
\end{proposition}

\begin{proof}
  To prove the first assertion,
  consider any $A \in (U\vNa{M}U^*)''$.
  By the double commutant theorem,
  it suffices to show that $A \in U\vNa{M}U^*$.
  As $\vNa{M}$ is a von Neumann algebra,
  this is equivalent to $U^*\! AU \in \vNa{M}''$,
  again by the double commutant theorem.
  Let $B \in \vNa{M}'$.
  It is easy to check that $UBU^* \in (U\vNa{M}U^*)'$.
  By assumption, $A$ lies in the commutant of $(U\vNa{M}U^*)'$.
  Thus we find that $[U^*\! AU,B] = U^* [A,UBU^*] U = 0$, as desired.

  The set of vectors $U\vNa{M}U^* U\Omega = U\vNa{M}\Omega$ is dense in $\hilb{H}$,
  since it is the image of $\vNa{M} \Omega$ under the homeomorphism $U$.
  Thus, the vector $U\Omega$ is cyclic for $U\vNa{M}U^*$.
  Let us show that it is also separating.
  Suppose $A$ is in $\vNa{M}$ and $UAU^*U\Omega = UA\Omega = 0$
  Since unitaries are injective, $A\Omega = 0$.
  Now $A=0$ follows from the assumption that $\Omega$ is separating for $\vNa{M}$.
  We have shown that the mapping $UAU^*U\Omega = UA\Omega$ from $U\vNa{M}U^* \to \hilb{H}$ is injective.

  Let $S = \overline{S_0}$ be the Tomita operator associated to $(\vNa{M},\Omega)$,
  and let $S' = \overline{S'_0}$ be the Tomita operator associated to $(U\vNa{M}U^*,U\Omega)$.
  Then we have
  \begin{equation*}
    (S'_0 U) A \Omega =
    S'_0 (U A U^*)  U \Omega =
    (U A^* U^*)  U \Omega =
    U A^* \Omega =
    U S_0 A \Omega
  \end{equation*}
  for all $A \in \vNa{M}$. Consequently, $S'_0 = U S_0 U^*$ as operators with domain $U\vNa{M}\Omega$.
  Taking the closure, we obtain $S' = U S U^*$.
  We can write this as $S' = UJU^* U\Delta^{1/2} U^*$,
  where $S = J \Delta^{1/2}$ is the polar decomposition of the Tomita operator.
  It is straightforward to check that
  $UJU^*$ is anti-unitary and $U\Delta^{1/2} U^*$ is positive selfadjoint,
  and satisfy the additional condition of \cref{theorem:polar-decomposition}.
  The uniqueness of the polar decomposition implies that
  $UJU^*$ is the modular conjugation and $U\Delta U^*$ is the modular conjugation
  associated to the pair $(U\vNa{M}U^*,U\Omega)$.
\end{proof}

\newpage

Finally, let us outline how modular theory enters into algebraic quantum field theory.

\begin{theorem}{Reeh-Schlieder Theorem}{reeh-schlieder}
  \todo{spell it out}
\end{theorem}

By Reeh-Schlieder (\cref{theorem:reeh-schlieder}), the vacuum $\Omega$ is cyclic and separating for $\localalg{\spacetimeregion{O}}$.
Thus, modular theory


\section{The Geometric Action of the Modular Operator Associated With a Wedge Domain}

\begin{definition}{Right and Left Wedge, General Wedges}{}
  The \emph{right wedge}\index{wedge!right}\nomenclature[WR]{$\rightwedge$}{right wedge}
  and \emph{left wedge}\index{wedge!left}\nomenclature[WL]{$\leftwedge$}{left wedge}
  in Minkowski space $M$ are the open subsets
  \begin{equation*}
    \rightwedge \defequal \braces[\big]{x \in M \vcentcolon x^1 > \abs{x^0}} 
    \quad \text{and} \quad
    \leftwedge \defequal \braces[\big]{x \in M \vcentcolon x^1 < -\abs{x^0}}.
  \end{equation*}
We say that a spacetime region $W \subset M$ is a \emph{wedge}\index{wedge}
  if there exists an element $g$ of the Poincaré group
  such that $W = g \rightwedge$.
\end{definition}

Instead of the right wedge,
we could just as well have used the left wedge to define the notion of a general wedge,
since they are transformed into each other by space inversion.

\begin{lemma}{}{general-wedge-from-right-wedge}
  If a spacetime region $W$ is a wedge,
  then there exists an element $g$ of the proper orthochronous Poincaré group
  such that $W = g \rightwedge$.
\end{lemma}

\begin{proof}
  \todo{xxx}
\end{proof}

In the standard representation of the Lorentz group, the boost (or velocity transformation) along the $x^1$-axis
with rapidity $2 \pi t$ is given by the matrix\footnote{
  This matrix depends on the choice of metric signature.
  Ours is $(+,-,-,-)$.
  For $(-,+,+,+)$, use
  \begin{equation*}
  \Lambda(t) = \begin{pmatrix}
    \phantom{-}\cosh(2 \pi @ t) & -\sinh(2 \pi @ t) & \; 0 \; & \; 0 \; \\
    -\sinh(2 \pi @ t) & \phantom{-}\cosh(2 \pi @ t) & 0 & 0 \\
    0 & 0 & 1 & 0 \\
    0 & 0 & 0 & 1 \\
  \end{pmatrix}.
  \end{equation*}
  }

\begin{equation*}
  \Lambda(t) = \begin{pmatrix}
    \cosh(2 \pi @ t) & \sinh(2 \pi @ t) & \; 0 \; & \; 0 \; \\
    \sinh(2 \pi @ t) & \cosh(2 \pi @ t) & 0 & 0 \\
    0 & 0 & 1 & 0 \\
    0 & 0 & 0 & 1 \\
  \end{pmatrix}
\end{equation*}

The following proposition shows that $t \mapsto \Lambda(t)$ is
a one-parameter subgroup of the stabilizer group of the right wedge
with respect to the action of the Lorentz group on subsets of Minkowski space.

\begin{proposition}{}{}
  \begin{enumerate}[label=(\roman*),nosep,leftmargin=*,widest=ii]
    \item $\Lambda(s + t) = \Lambda(s) \Lambda(t)$ for all $s,t \in \RR$.
    \item $\Lambda(t) \rightwedge = \rightwedge$ for all $t \in \RR$.
  \end{enumerate}
\end{proposition}

\begin{proof}
  The first property can be verified by direct computation.
  Let us prove the second.
  By definition, the image $\Lambda(t) x$ of a vector $x \in M$ lies in $\rightwedge$ if and only if
  \begin{equation*}
    x^0 \sinh(2 \pi t) + x^1 \cosh(2 \pi t) 
    > \abs{x^0 \cosh(2 \pi t) + x^1 \sinh(2 \pi t)},
  \end{equation*}
  or equivalently
  \begin{equation*}
    x^0 \parens[\big]{\sinh(2 \pi t) \mp \cosh(2 \pi t)}
    + x^1 \parens[\big]{\cosh(2 \pi t) \mp \sinh(2 \pi t)} > 0
  \end{equation*}
  for both sign choices.
  Using the definitions of the hyperbolic sine and cosine, this may be further simplified to $(x^1 \mp x^0) e^{2 \pi t} > 0$,
  which holds if and only if $x^1 > \abs{x^0}$,
  since the exponential is always positive.
  So we have shown that
  \begin{equation}
    \label{equation:image-right-wedge}
    \Lambda(t) x \in \rightwedge \iff x \in \rightwedge.
  \end{equation}
  This implies that $\Lambda(t)\rightwedge \subset \rightwedge$ for all $t \in \RR$.
  Conversely, given an arbitrary vector $y \in \rightwedge$,
  we have to find $x \in \rightwedge$ such that $\Lambda(t) x = y$.
  Consider $x = \Lambda(-t) y$. Clearly, $x \in \rightwedge$, because of $y \in \rightwedge$
  and~\eqref{equation:image-right-wedge}. Now it follows from $\Lambda(-t) = \Lambda(t)^{-1}$ that in fact $\Lambda(t) x = y$.
\end{proof}

\begin{theorem}{Bisognano-Wichmann Theorem \textmd{\cite{Bisognano1975}}}{}
  For the theory of a free scalar field in Minkowski spacetime,
  let $\spacetimeregion{O} \mapsto \localalg{\spacetimeregion{O}}$ be the net of von Neumann algebras of local observables.
  If $(J,\Delta)$ is the modular data associated to the algebra $\localalg{\rightwedge}$ of the right wedge and the vacuum $\Omega$, then
  \begin{equation*}
    J = \Theta \cdot U\parens[\big]{0, R_{23}(\pi)} \qquad
    \Delta^{it} = U\parens[\big]{0,\Lambda(t)},
  \end{equation*}
  where $U$ is the theory's unitary representation of the proper orthochronous Poincaré group.
\end{theorem}

\todo{give definition of $\Theta$ and $R_{23}$}

Note that above statement is for the right wedge only.
Let us investigate how the modular group changes, if we consider another wedge region.
By \cref{lemma:general-wedge-from-right-wedge} any wedge $W$ can be obtained as $W = g\rightwedge$, where $g$ is a proper orthochronous Poincaré transformation.
The covariance property~\eqref{equation:poincare-covariance-local-algebras} of $\vNa{R}$ implies
\begin{equation*}
  \localalg{W} =
  U(g) \localalg{\rightwedge} U(g)^*.
\end{equation*}
The vacuum $\Omega$ is Poincaré invariant:
\begin{equation*}
  U(g) \Omega = \Omega.
\end{equation*}
We write $(J_W,\Delta_W)$ for the modular data associated to $(\localalg{W},\Omega)$.
By \cref{proposition:modular-data-unitary}
\begin{equation*}
  J_W = U(g) J U(g)^* \qquad 
  \Delta_W = U(g) \Delta U(g)^*
\end{equation*}
Recall that the modular group $\Delta_W^{it}$ is defined by means of functional calculus.
This raises the following problem: given a selfadjoint operator $A$, a unitary operator $U$
and a suitable function $f$ we want to express $f(UAU^*)$ in terms of $f(A)$, if possible.
Note that two different functional calculi are at play here, the former is for $UAU^*$ and the latter for $A$.
Simple functions such as polynomials suggest $f(UAU^*) = Uf(A)U^*$.
That this is generally true is the statement of the following Lemma.


\begin{lemma}{}{functional-calclus-unitary-trafo}
  Suppose that $A$ is a selfadjoint operator on a Hilbert space $\hilb{H}$,
  with spectral measure $E_A$.
  Suppose $U$ is an unitary operator on $\hilb{H}$, and
  let $E_{U\! @AU^*}$ denote the spectral measure of the (selfadjoint) operator $UAU^*$.
  Then we have $U E_A U^* = E_{U\! @AU^*}$, and
  \begin{equation*}
    U f(A) U^* = f(U\! @@AU^*)
  \end{equation*}
  for all Borel functions $f : \RR \to \CC$.
\end{lemma}

\question{Ist diese Aussage korrekt? Ist mein Beweis richtig? Geht der auch einfacher?}

\begin{proof}
  For each regular value $\lambda \in \rho(A)$ let
  \begin{equation*}
    R_A(\lambda) = (A-\lambda)^{-1}
  \end{equation*}
  denote the resolvent operator of $A$.
  This proof is based on Stone's Formula \todo{reference},
  which relates the resolvent to the spectral projections of $A$:
  If $E_A$ is the spectral measure of $A$ and $\alpha < \beta$ are real numbers, then
  \begin{equation*}
    \stronglim_{\varepsilon \downarrow 0}
    \frac{1}{\pi i} \int_{\alpha}^{\beta} \bracks{R_A(\lambda + i \varepsilon)  - R_A(\lambda - i \varepsilon)} d\lambda 
    = E_A \parens[\big]{\bracks{\alpha,\beta}} + E_A \parens[\big]{\parens{\alpha,\beta}}
  \end{equation*}
  Recall that a spectral measure is countably additive.
  As a consequence,
  \begin{equation*}
    \stronglim_{\alpha \uparrow a}
    \stronglim_{\beta \downarrow b}
    \stronglim_{\varepsilon \downarrow 0}
    \frac{1}{2\pi i} \int_{\alpha}^{\beta} \bracks{R_A(\lambda + i \varepsilon)  - R_A(\lambda - i \varepsilon)} d\lambda 
    = E_A \parens[\big]{\bracks{a,b}}
  \end{equation*}
  for all $a \in \RR \cup \braces{-\infty}$, $b \in \RR \cup \braces{\infty}$.
  Observe that $\rho(A) = \rho(U\! @AU^*)$ and that for each (common) regular value $\lambda$ we have
  \begin{equation*}
    R_{U\! @AU^*}(\lambda) = U R_A(\lambda) @ U^*\!.
  \end{equation*}
  Since conjugation with an unitary commutes with the strong operator limit, we obtain
  \begin{equation*}
    E_{U\! @AU^*} \parens[\big]{\bracks{a,b}}
    = U E_A \parens[\big]{\bracks{a,b}} U^*
  \end{equation*}
  for all $a,b \in \RR$.
  The collection $\mathcal{A}$ of all subsets $S$ of $\RR$ such that
    $E_{U\! @AU^*} \parens[\big]{S} = U E_A \parens[\big]{S} U^*$
    is a $\sigma$-algebra on $\RR$.
    We have shown that all closed intervals belong to $\mathcal{A}$.
    It is well known that the Borel-$\sigma$-algebra $\mathcal{B}$ of $\RR$
    is generated by the closed intervals. Hence, $\mathcal{B} \subset \mathcal{A}$.
    This shows that the spectral measures $U E_A U^*$ and $E_{U\! @AU^*}$ coincide.
\end{proof}

\begin{equation*}
  \Delta_W^{it}
  = U(g) \Delta^{it} U(g)^*
  = U(g) U\parens[\big]{0,\Lambda(t)} U(g)^*
  = U\parens[\big]{g(0,\Lambda(t))g^{-1}}
\end{equation*}


Recall that Stones Theorem \todo{add reference} states that
every strongly continuous one-parameter unitary group
is of the form $t \mapsto e^{itK}$ with a uniquely determined
selfadjoint operator $K$, which is called \emph{infinitesimal generator} of the group.

\begin{definition}{Modular Hamiltonian}{}
  The infinitesimal generator of the modular group associated to a spacetime region $\spacetimeregion{O}$ is called the
  \emph{modular Hamiltonian}\index{modular!Hamiltonian}\nomenclature{$K_{\spacetimeregion{O}}$}{modular Hamiltonian for $\spacetimeregion{O}$}
  for said region, and denoted $K_{\spacetimeregion{O}}$.
\end{definition}

In other words, $K_{\spacetimeregion{O}}$ is the unique selfadjoint operator such that $\Delta_{\spacetimeregion{O}}^{it} = e^{itK_{\spacetimeregion{O}}}$ for all $t \in \RR$.

\begin{proposition}{}{}
  The modular Hamiltonian for the right wedge is given by $d \Gamma(A)$, where
  \begin{equation*}
    A\psi(p) = - \frac{2\pi}{i} \parens[\big]{\partial_0 \psi(p) \, p^1 + \partial_1 \psi(p) \, p^0}
  \end{equation*}
\end{proposition}

\section{Complex Lorentz Transformations}

\subsection{Analytic Continuation of the Space-Time Translation Group}

\subsection{Complex Lorentz Boosts}

\begin{lemma}{}{}
  Suppose $A$ is a selfadjoint operator on some Hilbert space $\hilb{H}$.
  For all complex numbers $z$ define a closed normal operator $V(z) = e^{izA}$ by means of functional calculus.
  Let $g$ be a xxx function. Then the range of the bounded operator $g(A)$ is contained in the domain of $V(z)$ for all $z$, and
  \begin{equation*}
    V(z) g(A) = \int e^{iz \lambda} g(\lambda) dE_A(\lambda).
  \end{equation*}
\end{lemma}

\subsection{A Convolution Theorem for Vector-Valued Tempered Distributions}

\blockcquote{Bisognano1975}{%
  The extension to vector-valued tempered distributions is trivial.
}



\chapterbib
\cleardoublepage

% vim: syntax=mytex