summaryrefslogtreecommitdiffstats
path: root/much.tex
blob: 249dc73ee3f6f5a51c6f56f0d6fa6eb0c9669f32 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
\chapter{A Quantum Energy Inequality Involving Local Modular Data}

\cite{Much2022}

\begin{equation*}
  \innerp{\psi}{\energydensity(f)\psi} \ge
  - \epsilon - \norm{\smash[b]{\Delta}_{\smash[t]{\sharp}}^{-1/2} \ft{g}_{\lambda}(K_{\raisebox{5pt}{\footnotesize$\sharp$}}) \energydensity(f) \FockVacuum}
\end{equation*}

\section{Misc}

\todo{Put this somewhere else.}

A \emph{Lorentz transform} is a linear automorphism of Minkowski spacetime
which preserves the Lorentz bilinear form.
Lorentz transforms are usually represented by (real) $4 \times 4$ matrices,
with respect to the standard basis.

The \emph{Lorentz group} $\FullLorentzGroup$.
\begin{equation*}
  \FullPoincareGroup = \RR^4 \ltimes \FullLorentzGroup
\end{equation*}

The relativistic transformation law for one-particle states is given by
\begin{equation*}
  \parens[\big]{U(a,\Lambda) \psi}(p) = e^{ia \cdot p} \psi(\Lambda^{-1} p),
  \quad \psi \in \hilb{H}, (a,\Lambda) \in \ProperOrthochronousPoincareGroup.
\end{equation*}
The mapping $(a,\Lambda) \mapsto U(a,\Lambda)$ is a (irreducible) unitary representation
of the proper orthochronous Poincaré group $\ProperOrthochronousPoincareGroup$
on the one-particle Hilbert space.
By applying any of the second quantization functors we obtain a representation on the multi-particle state space.
\begin{equation*}
  \parens[\big]{U(a,\Lambda) \psi}{}_n(p_1,\ldots,p_n) = e^{ia \cdot (p_1 + \cdots + p_n)} \psi_n(\Lambda^{-1} p_1, \ldots, \Lambda^{-1} p_n),
\end{equation*}

Poincaré covariance
\begin{equation}
  \label{equation:poincare-covariance-local-algebras}
  U(g) \localalg{\spacetimeregion{O}} U(g)^* = \localalg{g\spacetimeregion{O}}
  \qquad g \in \ProperOrthochronousPoincareGroup
\end{equation}

\begin{definition}{Von Neumann Algebra of Local Observables}{}
  \begin{equation*}
    \localalg{\spacetimeregion{O}} = \Set{b(\varphi(f)) \mid \text{$b$ bounded}, f \in \realschwartz{M}, \supp f \subset \spacetimeregion{O}}''
  \end{equation*}
\end{definition}

\section{Basic Concepts of Modular Theory}
\index{modular!theory}

If $\hilb{H}$ is a Hilbert space
we shall denote the $C^*$-algebra of all bounded linear operators on $\hilb{H}$ by $\BoundedLinearOperators{\hilb{H}}$.

\begin{definition}{Cyclic and Separating Vectors}{}
  Suppose $\hilb{H}$ is a Hilbert space and $\mathcal{A}$ is a $C^*$-subalgebra of $\BoundedLinearOperators{\hilb{H}}$.
  A vector $\Omega \in \hilb{H}$ is called
  \begin{itemize}
    \item \emph{cyclic}\index{cyclic vector} for $\mathcal{A}$ if the vector set $\mathcal{A} \Omega$ is dense in $\hilb{H}$.
    \item \emph{separating}\index{separating vector} for $\mathcal{A}$ if the map $A \mapsto A \Omega$ from $\mathcal{A}$ into $\hilb{H}$ is injective.
  \end{itemize}
\end{definition}
Occasionally, a vector that is both cyclic and separating is called \emph{standard}\index{standard vector}.

Recall that the commutant of a set $\mathcal{S} \subset B(\hilb{H})$ of operators
is defined as the set of all operators $T \in B(\hilb{H})$ which commute with all operators $S$ in $\mathcal{S}$.
We shall denote the commutant of $\mathcal{S}$ by $\mathcal{S}'$.\nomenclature[A]{$\mathcal{A}'$}{commutant of $\mathcal{A}$}

\begin{proposition}{}{cyclic-separating}
  Let $\hilb{H}$ be a Hilbert space and $\mathcal{A}$ be a $C^*$-subalgebra of $\BoundedLinearOperators{\hilb{H}}$.
  \begin{enumerate}
    \item \label{item:first} A vector is cyclic for $\mathcal{A}$ if and only if it is separating for $\mathcal{A}'$.
    \item \label{item:second} If $\mathcal{A}$ is a von Neumann algebra, then a vector is cyclic and separating for $\mathcal{A}$
  if and only if it is cyclic and separating for $\mathcal{A}'$.
  \end{enumerate}
\end{proposition}

\begin{proof}
  First, suppose that $\Omega \in \hilb{H}$ is cyclic for $\mathcal{A}$.
  If $A'$ is an element of $\mathcal{A}'$ with $A' \Omega = 0$,
  then $A' A \Omega = A A' \Omega = 0$ for all $A \in \mathcal{A}$.
  This means that $A'$ vanishes on the dense subspace $\mathcal{A} \Omega$,
  and thus on all of $\hilb{H}$, i.e.\ $A'=0$.
  This proves that $\Omega$ is separating for $\mathcal{A}'$.

  Conversely, suppose that $\Omega$ is separating for $\mathcal{A}'$.
  We have to show that the closed subspace $\overline{\mathcal{A}\Omega}$ is all of $\hilb{H}$.
  Let $P$ be the orthogonal projection onto $\overline{\mathcal{A}\Omega}$.
  Clearly, any element $A$ of $\mathcal{A}$ maps $\overline{\mathcal{A}\Omega}$ into itself.
  Thus, $PAP=AP$, and the same holds for $A^*$, that is, $PA^*P=A^*P$.
  Taking the adjoint of the second equation, we get $PAP=PA$. Hence, $P \in \mathcal{A}'$.
  Now, $P \Omega = \Omega = I \Omega$, where $I$ is the identity operator on $\hilb{H}$ which obviously also belongs to $\mathcal{A}'$,
  and the assumption that $\Omega$ is separating for $\mathcal{A'}$ implies $P=I$.
  Consequently, $\overline{\mathcal{A} \Omega} = \hilb{H}$.

  Statement~\ref{item:second} directly follows from~\ref{item:first} and
  the fact that $\mathcal{A}'' = \mathcal{A}$ by the Double Commutant Theorem.
\end{proof}

If $\Omega$ is separating for $\mathcal{A}$,
then every element of $\mathcal{A}\Omega$ is of the form $A\Omega$
with a unique $A \in \mathcal{A}$.
This allows us to define an (anti-linear) operator $S_0$ in $\hilb{H}$ with domain $\mathcal{A}\Omega$ by
\begin{equation}
  \label{equation:definition-s0}
  \quad S_0 A\Omega \defequal A^*\Omega \qquad A \in \mathcal{A}.
\end{equation}
The operator $S_0$ is densely defined if and only if $\Omega$ is cyclic for $\mathcal{A}$.
Since the $*$-operation on $\mathcal{A}$ is involutive,
the range of $S_0$ coincides with its domain.

\begin{lemma}{}{}
  If $\Omega$ is a cyclic and separating vector for a von Neumann algebra $\mathcal{A}$,
  then the operator $S_0$ defined by~\eqref{equation:definition-s0} is closable.
\end{lemma}
\begin{proof}
  By \cref{proposition:cyclic-separating},
  $\Omega$ is also cyclic and separating for the commutant $\vNa{A}'$.
  Hence we may, in analogy to $S_0$,
  define another anti-linear operator $F_0$ in $\hilb{H}$ with dense domain $\mathcal{A}' \Omega$ by
  \begin{equation*}
    \quad F_0 B\Omega \defequal B^*\Omega \qquad B \in \mathcal{A'}.
  \end{equation*}
  By definitions of $S_0$ and $F_0$, we have for every $A \in \mathcal{A}$ and $B \in \mathcal{A}'$
  \begin{equation*}
    \innerp{S_0 A \Omega}{B \Omega} = 
    \innerp{\Omega}{AB \Omega} = 
    \innerp{\Omega}{BA \Omega} = 
    \innerp{F_0 B\Omega}{A \Omega}.
  \end{equation*}
  This adjoint identity establishes that $S_0 \subset F_0^*$.
  (The \enquote{twisted} appearance of the identity is correct,
  since it involves anti-linear operators on both sides.)
  The Hilbert adjoint $F_0^*$ of $F_0$ is closed.
  Hence, we have shown that $S_0$ has a closed extension, and
  this implies that $S_0$ is closable.
\end{proof}

\begin{definition}{Tomita operator}{}
  Suppose $\Omega$ is a cyclic and separating vector for a von Neumann algebra $\mathcal{A}$.
  The closure $S = \operatorclosure{S_0}$
  of the operator $S_0$ defined on $\mathcal{A}\Omega$ by
  $S_0 A\Omega = A^*\Omega$
  for $A \in \mathcal{A}$
  is called the
  \emph{Tomita operator}\index{Tomita operator}\index{operator!Tomita}\nomenclature[S]{$S$}{Tomita operator}
  for the pair $(\mathcal{A},\Omega)$.
\end{definition}

It is a well-known fact that closed operators can be decomposed
in a similar fashion to the polar coordinate representation $z = e^{i\arg z} \abs{z}$
of a complex number.
We state the theorem in its somewhat uncommon variant for anti-linear operators,
as this will be our only use case.

\begin{theorem}{Polar Decomposition for Anti-Linear Closed Operators}{polar-decomposition}
  \index{polar decomposition}
  Let $T$ be an arbitrary closed anti-linear operator in a Hilbert space $\hilb{H}$.
  Then there exist
  a positive selfadjoint linear operator $\abs{T}$ and
  a partial anti-linear isometry $U$
  such that
  \begin{equation*}
    T = U \abs{T} \qquad \bracks[\big]{\text{in particular, $\Domain{T} = \Domain{\abs{T}}$}}.
  \end{equation*}
  The operators $U$ and $\abs{T}$ are uniquely determined given the additional conditions
  \begin{equation*}
    \ker\abs{T} = \ker T \qquad
    (\ker U)^\perp = (\ker T)^\perp \qquad
    \ran U = \overline{\ran T}.
  \end{equation*}
\end{theorem}

Proofs of this statement are contained in~\cite{ReedSimon1} and~\cite{Schmüdgen2012}.
When we speak of \emph{the} polar composition of an operator we tacitly assume that the additional conditions
ensuring uniqueness are satisfied.

Now we are able to introduce the fundamental objects of modular theory.

\begin{definition}{Modular Conjugation, Modular Operator}{}
  Suppose $\vNa{M}$ is a von Neumann algebra acting on a Hilbert space $\hilb{H}$,
  and suppose $\Omega \in \hilb{H}$ is a cyclic and separating vector for $\vNa{M}$.
  Let $S$ be the Tomita operator for $(\vNa{M},\Omega)$ and let
  \begin{equation*}
    S = J \Delta^{1/2}
  \end{equation*}
  be its polar decomposition.
  The anti-unitary operator $J$ is called
  \emph{modular conjugation}\index{modular!conjugation}\nomenclature[J]{$J$}{modular conjugation}.
  The positive selfadjoint operator $\Delta$ is called
  \emph{modular operator}\index{modular!operator}\index{operator!modular}\nomenclature{$\Delta$}{modular operator}.
  The pair $(J,\Delta)$ is said to be the \emph{modular data}\index{modular!data}\index{modular!objects} associated to
  the pair $(\vNa{M},\Omega)$.
\end{definition}

\todo{clarify why $J$ is anti-unitary}

\begin{definition}{Modular Group}{}
  Adopt the notation of the foregoing definition.
  The mapping $\RR \ni t \mapsto \Delta^{it}$ is called the \emph{modular group}\index{modular!group} associated to 
  $(\vNa{M},\Omega)$.
\end{definition}

The modular group is a strongly continuous one-parameter unitary group on $\hilb{H}$.

\begin{proposition}{}{modular-data-unitary}
  Suppose $\vNa{M}$ is a von Neumann algebra acting on a Hilbert space $\hilb{H}$.
  Let $U$ be a unitary operator on $\hilb{H}$.
  Then $U\vNa{M}U^*$ is a von Neumann algebra on $\hilb{H}$.
  Suppose further that $\Omega \in \hilb{H}$ is a cyclic and separating vector for $\vNa{M}$.
  Then $U \Omega$ is cyclic and separating for $U\vNa{M}U^*$.
  Let $(J,\Delta)$ be the modular data associated to $(\vNa{M},\Omega)$.
  Then $(UJU^*,U{\Delta}U^*)$ is the modular data associated to $(U\vNa{M}U^*,U\Omega)$.
\end{proposition}

\begin{proof}
  To prove the first assertion,
  consider any $A \in (U\vNa{M}U^*)''$.
  By the Double Commutant Theorem~\cite[Theorem 18.6]{Zhu1993},
  it suffices to show that $A \in U\vNa{M}U^*$.
  As $\vNa{M}$ is a von Neumann algebra,
  this is equivalent to $U^*\! AU \in \vNa{M}''$,
  again by the Double Commutant Theorem.
  Let $B \in \vNa{M}'$.
  It is easy to check that $UBU^* \in (U\vNa{M}U^*)'$.
  By assumption, $A$ lies in the commutant of $(U\vNa{M}U^*)'$.
  Thus we find that $[U^*\! AU,B] = U^* [A,UBU^*] U = 0$, as desired.

  The set of vectors $U\vNa{M}U^* U\Omega = U\vNa{M}\Omega$ is dense in $\hilb{H}$,
  since it is the image of $\vNa{M} \Omega$ under the homeomorphism $U$.
  Thus, the vector $U\Omega$ is cyclic for $U\vNa{M}U^*$.
  Let us show that it is also separating.
  Suppose $A$ is in $\vNa{M}$ and $UAU^*U\Omega = UA\Omega = 0$
  Since unitaries are injective, $A\Omega = 0$.
  Now $A=0$ follows from the assumption that $\Omega$ is separating for $\vNa{M}$.
  We have shown that the mapping $UAU^*U\Omega = UA\Omega$ from $U\vNa{M}U^* \to \hilb{H}$ is injective.

  Let $S = \operatorclosure{S_0}$ be the Tomita operator associated to $(\vNa{M},\Omega)$,
  and let $S' = \operatorclosure{S'_0}$ be the Tomita operator associated to $(U\vNa{M}U^*,U\Omega)$.
  Then we have
  \begin{equation*}
    (S'_0 U) A \Omega =
    S'_0 (U A U^*)  U \Omega =
    (U A^* U^*)  U \Omega =
    U A^* \Omega =
    (U S_0) A \Omega
  \end{equation*}
  for all $A \in \vNa{M}$. Consequently, $S'_0 = U S_0 U^*$ as operators with domain $U\vNa{M}\Omega$.
  Taking the closure, we obtain $S' = U S U^*$.
  We can write this as $S' = UJU^* U\Delta^{1/2} U^*$,
  where $S = J \Delta^{1/2}$ is the polar decomposition of the Tomita operator.
  It is straightforward to check that
  $UJU^*$ is anti-unitary and $U\Delta^{1/2} U^*$ is positive selfadjoint,
  and satisfy the additional condition of \cref{theorem:polar-decomposition}.
  The uniqueness of the polar decomposition implies that
  $UJU^*$ is the modular conjugation and $U\Delta U^*$ is the modular conjugation
  associated to the pair $(U\vNa{M}U^*,U\Omega)$.
\end{proof}

Finally, let us outline how modular theory enters into algebraic quantum field theory.

\begin{theorem}{Reeh--Schlieder Theorem}{reeh-schlieder}
  Let $\spacetimeregion{O}$ be any open spacetime region.
  Then the vacuum vector $\Omega$ is cyclic for $\localalg{\spacetimeregion{O}}$.
  If $\spacetimeregion{O}'$ is non-empty, then $\Omega$ is also separating for $\localalg{\spacetimeregion{O}}$.
\end{theorem}

By Reeh-Schlieder (\cref{theorem:reeh-schlieder}), the vacuum $\Omega$ is cyclic and separating for $\localalg{\spacetimeregion{O}}$.
Thus, modular theory


\section{The Geometric Action of the Modular Operator Associated With a Wedge Domain}

\begin{definition}{Right and Left Wedge, General Wedges}{wedge}
  The \emph{right wedge}\index{wedge!right}\nomenclature[WR]{$\rightwedge$}{right wedge}
  and \emph{left wedge}\index{wedge!left}\nomenclature[WL]{$\leftwedge$}{left wedge}
  in Minkowski space $M$ are the open subsets
  \begin{equation*}
    \rightwedge \defequal \Set[\big]{x \in M \given x^1 > \abs{x^0}} 
    \quad \text{and} \quad
    \leftwedge \defequal \Set[\big]{x \in M \given x^1 < -\abs{x^0}}.
  \end{equation*}
We say that a spacetime region $W \subset M$ is a \emph{wedge}\index{wedge}
  if there exists an element $g$ of the full Poincaré group
  such that $W = g \rightwedge$.
\end{definition}

Instead of the right wedge,
we could just as well have used the left wedge to define the notion of a general wedge,
since they are transformed into each other by space inversion.

\begin{lemma}{}{general-wedge-from-right-wedge}
  If a spacetime region $W$ is a wedge,
  then there exists an element $g$ of the proper orthochronous Poincaré group
  such that $W = g \rightwedge$.
\end{lemma}

\begin{proof}
  \todo{xxx}
\end{proof}

In the standard representation of the Lorentz group, the boost (or velocity transformation) along the $x^1$-axis
with rapidity $2 \pi t$ is given by the matrix\footnote{%
  This matrix depends on the choice of metric signature.
  Ours is $(+,-,-,-)$.
  For $(-,+,+,+)$, use
  \begin{equation*}
  \Lambda(t) = \begin{pmatrix}
    \phantom{-}\cosh(2 \pi @ t) & -\sinh(2 \pi @ t) & \; 0 \; & \; 0 \; \\
    -\sinh(2 \pi @ t) & \phantom{-}\cosh(2 \pi @ t) & 0 & 0 \\
    0 & 0 & 1 & 0 \\
    0 & 0 & 0 & 1 \\
  \end{pmatrix}.
  \end{equation*}
  }

\begin{equation}
  \label{equation:lorentz-boost}
  \Lambda(t) = \begin{pmatrix}
    \cosh(2 \pi @ t) & \sinh(2 \pi @ t) & \; 0 \; & \; 0 \; \\
    \sinh(2 \pi @ t) & \cosh(2 \pi @ t) & 0 & 0 \\
    0 & 0 & 1 & 0 \\
    0 & 0 & 0 & 1 \\
  \end{pmatrix}
\end{equation}

The following proposition shows that $t \mapsto \Lambda(t)$ is
a one-parameter subgroup of the stabilizer group of the right wedge
with respect to the action of the Lorentz group on subsets of Minkowski space.

\begin{proposition}{}{}
  \begin{enumerate}
    \item $\Lambda(s + t) = \Lambda(s) \Lambda(t)$ for all $s,t \in \RR$.
    \item $\Lambda(t) \rightwedge = \rightwedge$ for all $t \in \RR$.
  \end{enumerate}
\end{proposition}

\begin{proof}
  The first property can be verified by direct computation.
  Let us prove the second.
  By definition, the image $\Lambda(t) x$ of a vector $x \in M$ lies in $\rightwedge$ if and only if
  \begin{equation*}
    x^0 \sinh(2 \pi t) + x^1 \cosh(2 \pi t) 
    > \abs{x^0 \cosh(2 \pi t) + x^1 \sinh(2 \pi t)},
  \end{equation*}
  or equivalently
  \begin{equation*}
    x^0 \parens[\big]{\sinh(2 \pi t) \mp \cosh(2 \pi t)}
    + x^1 \parens[\big]{\cosh(2 \pi t) \mp \sinh(2 \pi t)} > 0
  \end{equation*}
  for both sign choices.
  Using the definitions of the hyperbolic sine and cosine, this may be further simplified to $(x^1 \mp x^0) e^{2 \pi t} > 0$,
  which holds if and only if $x^1 > \abs{x^0}$,
  since the exponential is always positive.
  So we have shown that
  \begin{equation}
    \label{equation:image-right-wedge}
    \Lambda(t) x \in \rightwedge \iff x \in \rightwedge.
  \end{equation}
  This implies that $\Lambda(t)\rightwedge \subset \rightwedge$ for all $t \in \RR$.
  Conversely, given an arbitrary vector $y \in \rightwedge$,
  we have to find $x \in \rightwedge$ such that $\Lambda(t) x = y$.
  Consider $x = \Lambda(-t) y$. Clearly, $x \in \rightwedge$, because of $y \in \rightwedge$
  and~\eqref{equation:image-right-wedge}. Now it follows from $\Lambda(-t) = \Lambda(t)^{-1}$ that in fact $\Lambda(t) x = y$.
\end{proof}

It can easily be seen that $\rightwedge' = \leftwedge$, and so \cref{theorem:reeh-schlieder} applies.

\begin{theorem}{Bisognano--Wichmann Theorem \textmd{\cite{Bisognano1975}}}{bisognano-wichmann}
  For the theory of a free scalar field in Minkowski spacetime,
  let $\spacetimeregion{O} \mapsto \localalg{\spacetimeregion{O}}$ be the net of von Neumann algebras of local observables.
  If $(J,\Delta)$ is the modular data associated to the algebra $\localalg{\rightwedge}$ of the right wedge and the vacuum $\Omega$, then
  \begin{equation*}
    J = \Theta \cdot U\parens[\big]{0, R_{23}(\pi)} \qquad
    \Delta^{it} = U\parens[\big]{0,\Lambda(t)},
  \end{equation*}
  where $U$ is the theory's unitary representation of the proper orthochronous Poincaré group.
\end{theorem}

\todo{give definition of $\Theta$ and $R_{23}$}

Note that above statement is for the right wedge only.
Let us investigate how the modular group changes, if we consider another wedge region.
By \cref{lemma:general-wedge-from-right-wedge} any wedge $W$ can be obtained as $W = g\rightwedge$, where $g$ is a proper orthochronous Poincaré transformation.
The covariance property~\eqref{equation:poincare-covariance-local-algebras} of $\vNa{R}$ implies
\begin{equation*}
  \localalg{W} =
  U(g) \localalg{\rightwedge} U(g)^*.
\end{equation*}
The vacuum $\Omega$ is Poincaré invariant:
\begin{equation*}
  U(g) \Omega = \Omega.
\end{equation*}
We write $(J_W,\Delta_W)$ for the modular data associated to $(\localalg{W},\Omega)$.
By \cref{proposition:modular-data-unitary}
\begin{equation*}
  J_W = U(g) J U(g)^* \qquad 
  \Delta_W = U(g) \Delta U(g)^*
\end{equation*}
Recall that the modular group $\Delta_W^{it}$ is defined by means of functional calculus.
This raises the following problem: given a selfadjoint operator $A$, a unitary operator $U$
and a suitable function $f$ we want to express $f(UAU^*)$ in terms of $f(A)$, if possible.
Note that two different functional calculi are at play here, the former is for $UAU^*$ and the latter for $A$.
Simple functions such as polynomials suggest $f(UAU^*) = Uf(A)U^*$.
That this is generally true is the statement of the following Lemma.


\begin{lemma}{}{functional-calclus-unitary-trafo}
  Suppose that $A$ is a selfadjoint operator on a Hilbert space $\hilb{H}$,
  with spectral measure $E_A$.
  Suppose $U$ is an unitary operator on $\hilb{H}$, and
  let $E_{U\! @AU^*}$ denote the spectral measure of the (selfadjoint) operator $UAU^*$.
  Then we have $U E_A U^* = E_{U\! @AU^*}$, and
  \begin{equation*}
    U f(A) U^* = f(U\! @@AU^*)
  \end{equation*}
  for all Borel functions $f : \RR \to \CC$.
\end{lemma}

\todo{write down the simpler proof}

\begin{proof}
  For each regular value $\lambda \in \rho(A)$ let
  \begin{equation*}
    R_A(\lambda) = (A-\lambda)^{-1}
  \end{equation*}
  denote the resolvent operator of $A$.
  This proof is based on Stone's Formula \todo{reference},
  which relates the resolvent to the spectral projections of $A$:
  If $E_A$ is the spectral measure of $A$ and $\alpha < \beta$ are real numbers, then
  \begin{equation*}
    \stronglim_{\varepsilon \downarrow 0}
    \frac{1}{\pi i} \int_{\alpha}^{\beta} \bracks{R_A(\lambda + i \varepsilon)  - R_A(\lambda - i \varepsilon)} d\lambda 
    = E_A \parens[\big]{\bracks{\alpha,\beta}} + E_A \parens[\big]{\parens{\alpha,\beta}}
  \end{equation*}
  Recall that a spectral measure is countably additive.
  As a consequence,
  \begin{equation*}
    \stronglim_{\alpha \uparrow a}
    \stronglim_{\beta \downarrow b}
    \stronglim_{\varepsilon \downarrow 0}
    \frac{1}{2\pi i} \int_{\alpha}^{\beta} \bracks{R_A(\lambda + i \varepsilon)  - R_A(\lambda - i \varepsilon)} d\lambda 
    = E_A \parens[\big]{\bracks{a,b}}
  \end{equation*}
  for all $a \in \RR \cup \Set{-\infty}$, $b \in \RR \cup \Set{\infty}$.
  Observe that $\rho(A) = \rho(U\! @AU^*)$ and that for each (common) regular value $\lambda$ we have
  \begin{equation*}
    R_{U\! @AU^*}(\lambda) = U R_A(\lambda) @ U^*\!.
  \end{equation*}
  Since conjugation with an unitary commutes with the strong operator limit, we obtain
  \begin{equation*}
    E_{U\! @AU^*} \parens[\big]{\bracks{a,b}}
    = U E_A \parens[\big]{\bracks{a,b}} U^*
  \end{equation*}
  for all $a,b \in \RR$.
  The collection $\mathcal{A}$ of all subsets $S$ of $\RR$ such that
    $E_{U\! @AU^*} \parens[\big]{S} = U E_A \parens[\big]{S} U^*$
    is a $\sigma$-algebra on $\RR$.
    We have shown that all closed intervals belong to $\mathcal{A}$.
    It is well known that the Borel-$\sigma$-algebra $\mathcal{B}$ of $\RR$
    is generated by the closed intervals. Hence, $\mathcal{B} \subset \mathcal{A}$.
    This shows that the spectral measures $U E_A U^*$ and $E_{U\! @AU^*}$ coincide.
\end{proof}

\begin{equation*}
  \Delta_W^{it}
  = U(g) \Delta^{it} U(g)^*
  = U(g) U\parens[\big]{0,\Lambda(t)} U(g)^*
  = U\parens[\big]{g(0,\Lambda(t))g^{-1}}
\end{equation*}


Recall that Stone's Theorem \todo{add reference} states that
every strongly continuous one-parameter unitary group
is of the form $t \mapsto e^{itK}$ with a uniquely determined
selfadjoint operator $K$, which is called \emph{infinitesimal generator} of the group.

\begin{definition}{Modular Hamiltonian}{}
  The infinitesimal generator of the modular group associated to a spacetime region $\spacetimeregion{O}$ is called the
  \emph{modular Hamiltonian}\index{modular!Hamiltonian}\nomenclature[KO]{$K_{\spacetimeregion{O}}$}{modular Hamiltonian for $\spacetimeregion{O}$}
  for said region, and denoted $K_{\spacetimeregion{O}}$.
\end{definition}

In other words, $K_{\spacetimeregion{O}}$ is the unique selfadjoint operator such that $\Delta_{\spacetimeregion{O}}^{it} = e^{itK_{\spacetimeregion{O}}}$ for all $t \in \RR$.

\begin{proposition}{}{}
  The modular Hamiltonian for the right wedge is given by $d \Gamma(A)$, where
  \begin{equation*}
    A\psi(p) = - \frac{2\pi}{i} \parens[\big]{\partial_0 \psi(p) \, p^1 + \partial_1 \psi(p) \, p^0}
  \end{equation*}
\end{proposition}
\todo{domain, proof}

\bluetext{Maybe this is simpler in Rindler coordinates...}

\section{Complex Lorentz Transformations}

The main result of this section is \cref{proposition:main-result}.

By definition, the \emph{complex Lorentz group}\index{Lorentz group!complex}\nomenclature[LC]{$\ComplexLorentzGroup$}{complex Lorentz group} $\ComplexLorentzGroup$ is the isometry group
of complex Minkowski space $M+iM \cong \CC^4$ with respect to the inner product
\begin{equation*}
  \innerp{z_1}{z_2} = \innerp{x_1}{x_2} - \innerp{y_1}{y_2} + i \parens[\big]{\innerp{x_1}{y_2} + \innerp{x_2}{y_1}}.
\end{equation*}
The \emph{complex Poincaré group}\index{Poincaré group!complex}\nomenclature[PC]{$\ComplexPoincareGroup$}{complex Poincaré group} is the semidirect product $\ComplexPoincareGroup \defequal \CC^4 \ltimes \ComplexLorentzGroup$.
The action of $\ComplexPoincareGroup$ on $M+iM$ is defined in the obvious way.
The complex Poincaré group has just two connected components, the subgroup $\ProperComplexPoincareGroup$ and the subset $\ImproperComplexPoincareTransformations$,
discriminated by the sign of $\det \Lambda \in \Set{\pm 1}$ for its elements $(z,\Lambda)$.
The (real) proper orthochronous Poincaré group $\ProperOrthochronousPoincareGroup$ is a subgroup of $\ProperComplexPoincareGroup$.
Each of the two following sections deals with a subgroup $G$ of $\smash{\ProperOrthochronousPoincareGroup}$,
and the possibility of extending a unitary representation of $G$ to a larger set within $\ProperComplexPoincareGroup$.

\subsection{Analytic Continuation of the Space-Time Translation Group}

%\todo{a short intro}

Let $a \mapsto U(a)$ be a strongly continuous unitary representation of the additive group of $\RR^4$ (on some separable Hilbert space).
By a generalization of Stone's Theorem~\cite[Theorem VIII.12]{ReedSimon1},
there exists a unique projection-valued measure $E$ on $\RR^4$ such that
\begin{equation}
  \label{equation:spectral-resolution-translation}
  U(a) = \int_{\RR^4} \exp(ia \cdot k) \, dE(k) \qquad a \in \RR^4.
\end{equation}
Then one can define a vector $P$ of unbounded selfadjoint operators
\begin{equation*}
  P_i = \int_{\RR^4} k_i \, dE(k) \qquad i=0,\ldots,3
\end{equation*}
which have a common dense domain $D$ and satisfy
\begin{equation*}
  a \cdot P = \int_{\RR^4} a \cdot k \, dE(k) \qquad a \in \RR^4.
\end{equation*}
We are specifically interested in the representation
\begin{equation*}
  U(a) \defequal U(a,I) \qquad a \in \RR^4
\end{equation*}
obtained by restricting the unitary representation of the Poincaré group $\RestrictedPoincareGroup$ on Fock space to the subgroup of spacetime translations.
In this case the vector operator $P$ carries the physical meaning of energy-momentum,
and we impose the so-called \emph{spectrum condition}
\begin{equation*}
  \langle a \cdot P \rangle_{\psi} \ge 0 \qquad
  \forall \psi \in D \;
  \forall a \in \ClosedForwardCone,
\end{equation*}
where $\ClosedForwardCone \defequal \Set{a \in \RR^4 \given a \cdot a \ge 0, a^0 \ge 0}$ is the \emph{closed forward cone}\index{cone!closed forward}\nomenclature[V]{$\ClosedForwardCone$}{closed forward cone}.
It can be shown \cite{Uhlmann1961} that the spectrum condition is equivalent to the statement that
the support of the spectral measure is contained in the closed forward cone, i.e.\ $\supp(E) \subset \ClosedForwardCone$.

Spectral calculus allows us to extend $a \mapsto U(a)$ to complex arguments $z \in \CC^4$ by simply replacing $a$ with $z$ in the spectral resolution~\eqref{equation:spectral-resolution-translation} of $U(a)$. 
However, one obtains, in general, an unbounded operator.
It is a consequence of the spectrum condition that $U(z)$ is bounded whenever $z$ lies in the \emph{closed forward tube}\index{tube!closed}\nomenclature[T]{$\ClosedForwardTube$}{closed forward tube} $\ClosedForwardTube \defequal \RR^4 + i\ClosedForwardCone$.
Observe that the set $\ClosedForwardTube$ is closed under vector addition and thus forms a commutative monoid; it is not a group.

\begin{proposition}{}{}
  For every $z \in \ClosedForwardTube$ the operator
  \nomenclature[U]{$U(z)$}{complex translation}
  \begin{equation}
    \label{equation:definition-complex-translation}
    U(z) \defequal \int_{\ClosedForwardCone} \exp(iz \cdot k) \, dE(k)
  \end{equation}
  is bounded.
  Moreover, $U(w+z) = U(w) U(z)$ for all $w,z \in \ClosedForwardTube$.
\end{proposition}

\begin{proof}
  By a general property of spectral integrals~\cite[Proposition 4.18]{Schmüdgen2012},
  the operator $U(z)$ is bounded if (and only if)
  the function $f(k) = \exp(iz \cdot k)$ is bounded $E$-almost everywhere.
  In view of the fact that $E$ is supported in the closed forward cone $\ClosedForwardCone$,
  it is sufficient to show that $f$ is bounded on $\ClosedForwardCone$.
  %the $E$-essential supremum of the function
  Since $z$ lies in the closed forward tube, $z=x+iy$ with $x \in \RR^4$ and $y \in \ClosedForwardCone$.
  Now $\abs{f(k)} = \exp(-y \cdot k)$, and on $\ClosedForwardCone$ this is bounded by $1$ because $y \cdot k \ge 0$ for all $k \in \ClosedForwardCone$.

  The identity $U(w+z) = U(w) U(z)$ follows from $\exp(i(w+z) \cdot k) = \exp(iw \cdot k)\*\exp(iz \cdot k)$
  and the boundedness of the operators, see~\cite[Proposition 4.16(iii) and (v)]{Schmüdgen2012}.
\end{proof}

\begin{proposition}{}{}
  If $(b,\Lambda) \in \RestrictedPoincareGroup$ and $z \in \ClosedForwardTube$, then $\Lambda z \in \ClosedForwardTube$ and
  \begin{equation*}
    U(b,\Lambda) U(z) U(b,\Lambda)^* = U(\Lambda z).
  \end{equation*}
\end{proposition}

\begin{proof}
  We exploit the uniqueness of the projection-valued measure $E$ satisfying~\eqref{equation:spectral-resolution-translation}.
  Since $\Lambda$ acts continuously on $\RR^4$, $\Lambda^{-1} S$ is a Borel set whenever $S \subset \RR^4$ is, and
  \begin{equation*}
    F(S) \defequal U(b,\Lambda) E(\Lambda^{-1} S) U(b,\Lambda)^*
    \qquad S \in \BorelSigmaAlgebra{\RR^4}
  \end{equation*}
  is a well-defined projection-valued measure on $\RR^4$.
  By the Transformation Formula for Spectral Integrals~\cite[Proposition 4.24]{Schmüdgen2012}, we have
  \begin{align}
    \int_{\RR^4} \exp(iz \cdot k) \, dF(k)
    &= U(b,\Lambda) \bracks[\bigg]{\,\int_{\RR^4} \!\exp(iz \cdot \Lambda k) \, dE(k)} U(b,\Lambda)^* \nonumber\\
    &= U(b,\Lambda) \bracks[\bigg]{\,\int_{\RR^4} \!\exp(i \Lambda^{-1} z \cdot k) \, dE(k)} U(b,\Lambda)^* \nonumber\\
    \label{equation:F-integral}
    &= U(b,\Lambda) U(\Lambda^{-1} z)  U(b,\Lambda)^*
  \end{align}
  for all $z \in \ClosedForwardTube$.
  In particular, for $z=a \in \RR^4$ the last term equals
  \begin{equation*}
    U(b,\Lambda) U(\Lambda^{-1} a)  U(b,\Lambda)^* = U(a) \qquad a \in \RR^4,
  \end{equation*}
  which can be seen by applying $U$ to the identity
  \begin{equation*}
    (b,\Lambda) (\Lambda^{-1} a, I) (b,\Lambda)^{-1} = (a,I).
  \end{equation*}
  Hence, $U(a) = \int \exp(ia \cdot k) dF(k)$ for all $a \in \RR^4$. We conclude $E = F$.
  Now~\eqref{equation:F-integral} asserts that $U(z) = U(b,\Lambda) U(\Lambda^{-1} z) U(b,\Lambda)$ for all $z \in \ClosedForwardTube$
  and a substitution of $z$ by $\Lambda z$ yields the desired identity.
\end{proof}

%\begin{proposition}{Analyticity of the Complex Translation Monoid}{analyticity-complex-translations}
  \begin{proposition}{\textmd{\cite[Theorem 4]{Uhlmann1961}}}{analyticity-complex-translations}
    The operator-valued map $z \mapsto U(z)$ given by~\eqref{equation:definition-complex-translation} is
  strongly continuous on $\ClosedForwardTube$ and
  analytic on $\OpenForwardTube$.
\end{proposition}

\todo{Explain what it means for an operator-valued function of several complex variables to be analytic.}

\begin{lemma}{}{complex-translation}
  Let $g = (b,\Lambda)$ be a proper orthochronous Poincaré transform with $b \in \OpenForwardCone$.
  Then, for all $z \in \OpenForwardTube$
  \begin{equation*}
    gz \in \OpenForwardTube \qquad
    U(g) U(z) = U(gz).
  \end{equation*}
\end{lemma}

\begin{proof}
  \bluetext{Edge of the Wedge}
\end{proof}

Next we consider an operator-valued tempered distribution $u$ that is \emph{covariant}
in the sense that it obeys the relativistic transformation law
\begin{equation}
  \label{equation:covariance-distribution}
  U(g) u(f) U(g)^* = u(f_g) \qquad g \in \RestrictedPoincareGroup, f \in \schwartz{\RR^4},
\end{equation}
where $f_g(x) = f(g^{-1} x)$ for all $x \in M$.
In particular, if $g=(a,I)$ is the translation by a vector $a \in \RR^4$,
then~\eqref{equation:covariance-distribution} and the invariance of the vacuum vector $\FockVacuum$ imply
\begin{equation}
  \label{equation:real-translation-law}
  U(a) u(f) \FockVacuum = u(f_a) \FockVacuum \qquad \forall a \in \RR^4.
\end{equation}
We would like to extend this law to complex translation vectors,
but translating a function defined on $\RR^4$ by a complex vector is not a sensible operation.
Nevertheless, we have $\FT{f_a}(p) = \exp(ia \cdot p) \ft{f}(p)$ in Fourier space,
and $\exp(iz \cdot p) \ft{f}(p)$ is a well defined function of $p \in \RR^4$ even when $z \in \CC^4$.
The obvious idea would be to define $f_z$ as the inverse Fourier transform of this function.
This does not work because $\exp(iz \cdot p) \ft{f}(p)$ is generally not in the Schwartz class.
However, thanks to the spectrum condition we may modify this function outside of the closed forward cone.

\begin{lemma}{}{depends-only-on-restriction}
  Let $u$ be a covariant operator-valued tempered distribution.
  Then the vector $u(f) \FockVacuum$, where $f \in \schwartz{\RR^4}$,
  depends only on the restriction of $\ft{f}$ to $\ClosedForwardCone$.
\end{lemma}

\begin{proof}
  We consider a Schwartz function $g \in \schwartz{\RR^4}$ and
  the operator $G = \int g(k) dE(k)$,
  where $E$ is the unique projection-valued measure on $\RR^4$ such that
  $U(a) = \int \exp(ik \cdot a) dE(k)$ for all $a \in \RR^4$.
  Let $g(k) = (2 \pi)^{-2} \int \ift{g}(a) \exp(ia \cdot k) da$ be the Fourier decomposition of $g$.
  \begin{multline*}
    \hspace{1cm} (2 \pi)^2 G = \int_{\ClosedForwardCone} \!\int_{\RR} \ift{g}(a) \exp(ia \cdot k) \, da \, dE(k) = \\
    = \int_{\RR} \ift{g}(a) \!\int_{\ClosedForwardCone} \exp(ia \cdot k) \, dE(k) \ da
    = \int_{\RR} \ift{g}(a) U(a) \, da \hspace{1cm}
  \end{multline*}
  \question{Darf ich hier wirklich die Integrationsreihenfolge vertauschen?}

  Recall that the Fourier transform of $u$ is defined by $\ft{u}(f) = u(\ft{f}@@)$ for $f \in \schwartz{\RR^4}$.
  We obtain the action of the translation group on $\ft{u}(\ft{f}@@)\FockVacuum$ by definition chasing and~\eqref{equation:real-translation-law}:
  \begin{equation*}
    U(a) \ft{u}(\ft{f}@@)\FockVacuum
    = U(a) u(f)\FockVacuum
    = u(f_a)\FockVacuum
    = \ft{u}(\ft{f}_a)\FockVacuum
    = \ft{u}(\ft{f}e_a)\FockVacuum
  \end{equation*}
  Here $e_a$ stands for the function $e_a(p) = \exp(ia \cdot p)$.
  \begin{equation*}
    G @\ft{u}(\ft{f}@@)\FockVacuum
    = \int \ift{g}(a) @\ft{u}(\ft{f}e_a)\FockVacuum \, da
    = \ft{u} \parens[\bigg]{\ft{f} \int \ift{g}(a) e_a da} \FockVacuum 
    = \ft{u}(\ft{f} g) \FockVacuum
  \end{equation*}
  The second identity is due to the continuity of the vector-valued map $f \mapsto u(f) \FockVacuum$.
  If the support of $g$ does not intersect the support of $E$, i.e.\ the closed forward cone, then $G=0$.
  Thus, $\ft{u}(\ft{f} g) \FockVacuum = 0$.
  This proves that $u(f_1) \FockVacuum = u(f_2) \FockVacuum$ when $\supp(\ft{f_1} - \ft{f_2}) \subset \ClosedForwardCone$.
\end{proof}

This fact inspires the definition
\begin{equation*}
  f_z \defequal d_z * f \qquad z \in \ClosedForwardTube
\end{equation*}
where $d_z$ is any Schwartz function on $\RR^4$ such that $\FT{d_z}(p) = \exp(iz \cdot p)$ for all $p \in \ClosedForwardCone$.
Such a function does exist \todo{elaborate, smooth cutoff}. Then $f_z$ will be Schwartz class as well.
Moreover, $u(f_z) \FockVacuum$ does not depend on the specific choice of $d_z$, by~\cref{lemma:depends-only-on-restriction}.

%\begin{lemma}{}{}
  %For every $z \in \ClosedForwardTube$ there exists a Schwartz function $d_z \in \schwartz{\RR^4}$
  %such that $\ft{e_z} \in \schwartz{\RR^4}$ and $\ft{e_z}(p) = \exp(iz \cdot p)$ for $p \in \ClosedForwardCone$.
%\end{lemma}

\begin{proposition}{}{prp}
  Let $u$ be a covariant operator-valued tempered distribution,
  and let $f \in \schwartz{\RR^4}$ be a test function. Then we have,
  in generalization of~\eqref{equation:real-translation-law},
  \begin{equation*}
    U(z) u(f) \FockVacuum = u(f_z) \FockVacuum \qquad \forall z \in T_+.
  \end{equation*}
\end{proposition}

\begin{proof}
  By \cref{proposition:analyticity-complex-translations},
  the function $z \mapsto U(z) u(f) \FockVacuum$ is analytic on the open forward tube.
  \todo{Zeige, dass $z \mapsto u(f_z) \FockVacuum$ ebenfalls analytisch ist.
  Dann folgt die Behauptung wohl mit Edge of the Wedge~\cite[Theorem 2-17]{Streater1964}}
\end{proof}

\begin{corollary}{}{}
  Let $u$ be a covariant operator-valued tempered distribution,
  and let $f \in \schwartz{\RR^4}$ be a test function. Then we have,
  \begin{equation*}
    U(z) u(f) \FockVacuum = \int dx \, f(x) \, u(d_{z+x}) \FockVacuum \qquad \forall z \in T_+.
  \end{equation*}
\end{corollary}

\begin{proof}
  The convolution formula \cref{proposition:vector-valued-convolution-formula} applied to the vector-valued distribution defined by $f \mapsto \alpha(f) = u(f) \FockVacuum$ yields
  \begin{equation*}
    (\alpha * \tilde{d}_z)(f) = \int dx \, f(x) \, \alpha(\tau_x d_z)
  \end{equation*}
  Using \cref{proposition:prp}, we calculate
  \begin{equation*}
    (\alpha * \tilde{d}_z)(f) = \alpha(d_z * f) = \alpha(f_z) = u(f_z) \FockVacuum = U(z) u(f) \FockVacuum.
  \end{equation*}
  It is easily seen by Fourier transformation that $\tau_x d_z = d_{x+z}$.
  Hence, $\alpha(\tau_x d_z) = u(d_{x+z}) \FockVacuum$.
\end{proof}

\subsection{Complex Lorentz Boosts}

The Lorentz boosts $\Lambda(t)$ given by
the matrices~\eqref{equation:lorentz-boost} in standard representation
have a natural interpretation for complex parameters,
since the hyperbolic functions $\cosh$ and $\sinh$ extend analytically to the whole complex plane.
In view of Lemma xxx it follows immediately that the matrix-valued function $\CC \ni w \mapsto \Lambda(w)$ is entire analytic.
In particular, the vector-valued function $\CC \ni w \mapsto \Lambda(w) z$ is entire analytic for every fixed vector $z \in \CC^4$.

We are particularly interested in the case of a purely imaginary parameter.
The relations $\cosh iz = \cos z$ and $\sinh iz = i \sin z$
between the complex hyperbolic and trigonometric functions imply
\begin{equation*}
  \Lambda(is) = \begin{pmatrix}
    \phantom{i}\cos(2 \pi @ s) & i\sin(2 \pi @ s) & \; 0 \; & \; 0 \; \\
    i\sin(2 \pi @ s) & \phantom{i}\cos(2 \pi @ s) & 0 & 0 \\
    0 & 0 & 1 & 0 \\
    0 & 0 & 0 & 1 \\
  \end{pmatrix}
  \qquad \forall s \in \RR.
\end{equation*}
For later use, we give the action of $\Lambda(is)$ on a complex four-vector $x+iy$:
\begin{equation}
  \label{equation:pure-imaginary-lorentz-boost}
  \Lambda(is) (x+iy) =
  \begin{pmatrix}
    \cos(2 \pi @ s) x^0 - \sin(2 \pi @ s) y^1 \\
    \cos(2 \pi @ s) x^1 - \sin(2 \pi @ s) y^0 \\
    x^2 \\
    x^3 
  \end{pmatrix}
  +i
  \begin{pmatrix}
    \sin(2 \pi @ s) x^1 + \cos(2 \pi @ s) y^0 \\
    \sin(2 \pi @ s) x^0 + \cos(2 \pi @ s) y^1 \\
    y^2 \\
    y^3 
  \end{pmatrix}
\end{equation}

We

\begin{equation*}
  \mathcal{J} \defequal \Lambda(i/2) = \begin{pmatrix}
    -1 & 0 & \; 0 \; & \; 0 \; \\
    0 & -1 & 0 & 0 \\
    0 & 0 & 1 & 0 \\
    0 & 0 & 0 & 1 \\
  \end{pmatrix}
\end{equation*}

\begin{equation*}
  \mathcal{J}_{\pm} \defequal \Lambda(\pm i/4) = \begin{pmatrix}
    0 & \pm i & \; 0 \; & \; 0 \; \\
    \pm i & 0 & 0 & 0 \\
    0 & 0 & 1 & 0 \\
    0 & 0 & 0 & 1 \\
  \end{pmatrix}
\end{equation*}

We now turn to the unitary representation of (real) Lorentz boosts
\begin{equation*}
  V(t) \defequal U \parens[\big]{0,\Lambda(t)} \qquad t \in \RR
\end{equation*}
on Fock space and aim for an analytic extension similar to the previous section.
By Stone's theorem theorem there exists a unique selfadjoint operator $K$ such that
\begin{equation*}
  V(t) = \exp(itK) = \int_{\RR} \exp(it \lambda) \,dE_K(\lambda),
\end{equation*}
where $E_K$ is the spectral measure on $\RR$ associated to $K$.
Now we define \emph{complex Lorentz boosts} to be the operators
\nomenclature[V]{$V(z)$}{complex Lorentz boost}
\begin{equation*}
  V(z) \defequal \int_{\RR} \exp(iz \lambda) \,dE_K(\lambda) \qquad z \in \CC.
\end{equation*}
In contrast to the previous section, we


\begin{lemma}{}{}
  Suppose $A$ is a selfadjoint unbounded operator on some Hilbert space $\hilb{H}$.
  For each complex number $z$ define the closed normal operator $V(z) = e^{izA}$ by means of functional calculus.
  Let $g \in \schwartz{\RR}$ be a Schwartz function.
  \begin{enumerate}
    \item $V(z) V(w) = V(z + w)$ for all $z,w \in \CC$.
    \item The operator $g(A)$ is bounded, and its range is contained in the domain of $V(z)$ for all $z \in \CC$.
    \item The operator $V(z) g(A)$ is bounded for all $z \in \CC$, and has spectral resolution
      \begin{equation*}
        V(z) g(A) = \int e^{iz \lambda} g(\lambda) dE_A(\lambda).
      \end{equation*}
    \item The function $z \mapsto V(z) g(A)$ is entire analytic.
  \end{enumerate}
\end{lemma}

Remember that a \emph{core}\index{operator!core for an} for a closed densely defined unbounded operator $T$
is, by definition, a linear subspace $\mathcal{D}_0$ of its domain $\Domain{T}$ such that
the closure of the restriction of $T$ to $\mathcal{D}_0$ coincides with $T$.
%symbolically $\overline{T \vert \mathcal{D}_0} = T$.
Each core of $T$ is necessarily a dense subspace of $\Domain{T}$,
but a dense subspace of $\Domain{T}$ need not be a core for $T$.

\begin{lemma}{A Common Core for All Complex Lorentz Boosts}{common-core-for-complex-lorentz-boots}
  Adopt the notation of the foregoing lemma. The linear subspace
  \begin{equation*}
    \mathcal{D}_0 = \Span \Set{\ran g(K) \given g \in \schwartz{\RR}} 
  \end{equation*}
  is a core for $V(z)$ for every $z \in \CC$.
\end{lemma}

\begin{proof}
  $M_n = \bracks{-n,n}$
\end{proof}

\subsection{Application to the Energy Density}

The following three lemmas are variations of the arguments
brought forward by~\citeauthor{Bisognano1975} in their proof of \cref{theorem:bisognano-wichmann}.
The main difference is that we state \cref{lemma:biso1} and \cref{lemma:biso2} as operator identities without reference to a field operator,
and proof \cref{lemma:biso3} for arbitrary Lorentz-covariant operator-valued distributions
rather than products of field operators.
This generalization is necessary for the application to the energy density.
In addition, we provide in \cref{chapter:convolution} a complete proof of the convolution formula for vector-valued distributions.

Roughly speaking, the following lemma asserts that a translation by a complex vector
followed by a suitable imaginary boost is again a complex translation.

\begin{lemma}{}{biso1}
Let $z = x + iy \in \OpenForwardTube$ with $x,y$ real, and suppose $y^2=y^3=0$.
  \begin{enumerate}
    \item If $x \in \rightwedge$, then for all $s \in [0,\tfrac{1}{4}]$ 
      \begin{equation*}
        \Lambda(is) z \in \OpenForwardTube, \qquad
        \ran U(z) \subset \dom V(is), \qquad 
  V(is) U(z) = U \parens[\big]{\Lambda(is) z}.
      \end{equation*}
    \item If $x \in \leftwedge$, then the above holds for all $s \in [0,-\tfrac{1}{4}]$.
  \end{enumerate}
\end{lemma}
\nomenclature[dom]{$\dom T$}{domain of the operator $T$\nomnorefpage}
\nomenclature[ran]{$\ran T$}{range of the operator $T$\nomnorefpage}

\begin{proof}
  The result of applying $\Lambda(is)$ for some $s \in \RR$ to a complex four-vector $x+iy$
  has been given in~\eqref{equation:pure-imaginary-lorentz-boost}.
  To show that this vector lies in the open forward tube,
  we need to verify that its imaginary part lies in the open forward cone $\OpenForwardCone$.
  By definition, a real four-vector $a$ lies in $\OpenForwardCone$ if and only if
  $a^0 > 0$ and $a \cdot a > 0$. If $a^2 = a^3 = 0$, then
  these conditions are easily seen to be equivalent to the conditions
  $a^0 > 0$ and $a^0 \mp a^1 > 0$ (for both sign choices).

  Since the second and third components of the imaginary part of~\eqref{equation:pure-imaginary-lorentz-boost},
  $y^2$ and $y^3$, vanish by assumption, it is sufficient to prove
  \begin{equation}
    \label{equation:inequalities}
    \begin{aligned}
      \sin(2 \pi s) x^1 + \cos(2 \pi s) y^0 &> 0 \ \text{and} \\
      \sin(2 \pi s) \parens[\big]{x^1 \mp x^0} + \cos(2 \pi s) \parens[\big]{y^0 \mp y^1} &> 0.
    \end{aligned}
  \end{equation}
  The assumption $x \in \rightwedge$ implies that
  $x^1 > 0$ and $x^1 \mp x^0 > 0$,
  by \cref{definition:wedge}.
  The assumptions $y \in \OpenForwardCone$ and $y^2 = y^3 = 0$ imply that
  $y^0 > 0$ and $y^0 \mp y^1 > 0$,
  by the argument in the foregoing paragraph.
  So, all we need to do to ensure~\eqref{equation:inequalities} holds,
  is choose $s$ such that both $\sin(2 \pi s)$ and $\cos(2 \pi s)$ are nonnegative.
  (Then, at least one of these will be positive.)
  Clearly, this is true for all $s \in \bracks{0,\tfrac{1}{4}}$.

  \noindent\begin{minipage}{0.5\textwidth}
  \hspace{\parindent} The vector-valued function $\CC \ni s \mapsto \Lambda(is) z$ is entire analytic.
  In particular it is continuous, and we have shown that it maps the compact subset $[0,1/4]$ into the open set $\OpenForwardTube$.
  This implies that there exists a connected open neighborhood $N \subset \CC$ of $[0,1/4]$ such that $\Lambda(is) z \in \OpenForwardTube$ for all $s \in N$.

  \end{minipage} \hfill
  \begin{minipage}{0.45\textwidth}
    \begin{center}
    \begin{tikzpicture}[baseline=10]
      \draw[->] (-1,0) -- (3,0) node[right] {\footnotesize$\Real s$};
      \draw[->] (0,-1) -- (0,2) node[left] {\footnotesize$\Imag s$};
      \draw[faunat,thick,{Parenthesis[]}-{Parenthesis[]}] (0,-0.5) -- (0,0.5);
      \draw[thick,{Bracket[]}-{Bracket[]}] (-0.3pt,0) -- (2,0);
      \draw (1,1) node {$N$};
      \draw (2,0) node[above] {\footnotesize$\tfrac{1}{4}$};
      \draw plot [smooth cycle] coordinates {(2.5,0) (2,1) (1,0.7) (0.3,1) (-0.5,0.7) (-0.3,-0.7) (1.6,-0.7)};
    \end{tikzpicture}
    \end{center}
  \end{minipage}

  Let $\xi \in \hilb{F}$ be arbitrary, and let $\eta$ be in the common dense domain $\mathcal{D}_0$ of the operators $V(is)$ from \cref{lemma:common-core-for-complex-lorentz-boots}.
  Then the function $f_1(s) = \innerp{V(is)^* \eta}{U(z) \xi}$ is well-defined, and entire analytic by Lemma xxx.
  The function $f_2(s) = \innerp{\eta}{U(\Lambda(is) z) \xi}$ is analytic on $N$, by \cref{proposition:analyticity-complex-translations}.
  Since $N$ is an open neighborhood of $0$, there is an $\epsilon >0$ such that $i(-\epsilon,\epsilon) \subset N$.
  By \cref{lemma:complex-translation}, $V(is) U(z) = U(\Lambda(is) z)$ if $is \in \RR$.
  Hence, $f_1$ and $f_2$ agree in an open real neighborhood of $is$.
  Now the Identity Principle implies $f_1 \equiv f_2$ on $N$.
  Since this holds for all $\eta$ in $\mathcal{D}_0$,
  which is a core for $V(is)^{**} = V(is)$,
  we conclude that $U(z) \xi$ lies in the domain of $V(is)$,
  and $V(is) U(z) \xi = U(\Lambda(is) z) \xi$.
  As $\xi$ was arbitary, the proof is complete.
\end{proof}

Remember that $\mathcal{J} = \Lambda(i/2) = \diag(-1,-1,1,1)$.

\begin{lemma}{}{biso2}
  Let $x \in \rightwedge$, and let $e_0 = (1,0,0,0)$ be the forward timelike unit vector. Then
\begin{equation*}
  \stronglim_{\varepsilon \downarrow 0} V(i/4) U(x+i \varepsilon e_0)
  = U \parens[\big]{\Lambda(i/4)x} 
  = \stronglim_{\varepsilon \downarrow 0} V(-i/4) U(\mathcal{J}x+i \varepsilon e_0)
\end{equation*}
\end{lemma}

\begin{proof}
  The first identity follows from \cref{lemma:biso2}(i)
  and the strong continuity of $z \mapsto U(z)$ on $\ClosedForwardTube$ (\cref{proposition:analyticity-complex-translations}).
  For the second identity, note that $\mathcal{J} x \in \leftwedge$ and
  apply \cref{lemma:biso2}(ii), then use $\Lambda(-i/4) \mathcal{J} = \Lambda(i/4)$.
\end{proof}

\begin{lemma}{}{biso3}
  Suppose that $u$ is a covariant operator-valued tempered distribution.
  Let $f \in \schwartz{M}$ with $\supp f \subset \rightwedge$, and
  let $g \in \schwartz{M}$ be arbitrary. Then
  \begin{equation*}
    V(i/2) g(K) u(f) \FockVacuum = g(K) u(f_{\mathcal{J}}) \FockVacuum
  \end{equation*}
\end{lemma}

Here, $K$ is the infinitesimal generator of the group $t \mapsto V(t)$ of real Lorentz boosts,
$\FockVacuum$ is the Fock vacuum, and $\mathcal{J}$ is the Lorentz transformation given by the diagonal matrix $\diag(-1,-1,1,1)$.

\begin{proof}
  a
\end{proof}

\begin{equation*}
  \Delta^{-1/2} g(K) \energydensity(f) \FockVacuum = g(K) \energydensity(f^J) \FockVacuum
\end{equation*}

Die Anwendung auf die Energiedichte $\energydensity$:

\begin{proposition}{}{main-result}
  Suppose $W \subset M$ is any wedge domain, with associated modular operator $\Delta_W$ and modular Hamiltonian $K_W$.
  Let $f \in \schwartz{M}$ with $\supp f \subset W$, and
  let $h \in \schwartz{M}$ be arbitrary. Then
  \begin{equation*}
    \norm{\Delta_W^{-1/2} h(K_W) \energydensity(f) \FockVacuum}
    = \norm{h(K) \energydensity(f_{\mathcal{J}g}) \FockVacuum},
  \end{equation*}
  where $K$ is the modular Hamiltonian of the right wedge $\rightwedge$,
  and $g$ is any element of $\RestrictedPoincareGroup$ such that $W = g \rightwedge$,
  and $\mathcal{J} = \diag(-1,-1,1,1)$.
\end{proposition}
In der Ungleichung aus~\cite{Much2022} ist $h$ eine Gauß-Funktion.

\section{Calculating Gaussians of the Modular Hamiltonian}

coming soon\ldots

% vim: syntax=mytex