summaryrefslogtreecommitdiffstats
path: root/pages/complex-analysis/one-complex-variable/power-series.md
diff options
context:
space:
mode:
Diffstat (limited to 'pages/complex-analysis/one-complex-variable/power-series.md')
-rw-r--r--pages/complex-analysis/one-complex-variable/power-series.md5
1 files changed, 3 insertions, 2 deletions
diff --git a/pages/complex-analysis/one-complex-variable/power-series.md b/pages/complex-analysis/one-complex-variable/power-series.md
index 31793ab..4876d30 100644
--- a/pages/complex-analysis/one-complex-variable/power-series.md
+++ b/pages/complex-analysis/one-complex-variable/power-series.md
@@ -21,7 +21,8 @@ $a$ is the *center* of the series.
{% enddefinition %}
{% lemma %}
-Suppose the Banach space valued power series $\sum_{n=0}^{\infty} x_n (z - a)^n$ converges for $z = a + w$.
+Suppose the Banach space valued power series $\sum_{n=0}^{\infty} x_n (z - a)^n$
+converges for $z = a + w$.
Then it converges absolutely for all $z$ with $\abs{z-a} < \abs{w}$.
{% endlemma %}
@@ -35,7 +36,7 @@ Then either
- the series converges only for $z=a$ (formally $R=0$), or
- there exists a number $0<R<\infty$ such that
- the series converges absolutely whenever $\abs{z-a} < R$
+ the series converges absolutely whenever $\abs{z-a} < R$
and diverges whenever $\abs{z-a} > R$, or
- the series converges absolutely for all $z \in \CC$ (formally $R=\infty$).