summaryrefslogtreecommitdiffstats
path: root/pages/functional-analysis-basics/the-fundamental-four/hahn-banach-theorem.md
diff options
context:
space:
mode:
Diffstat (limited to 'pages/functional-analysis-basics/the-fundamental-four/hahn-banach-theorem.md')
-rw-r--r--pages/functional-analysis-basics/the-fundamental-four/hahn-banach-theorem.md259
1 files changed, 155 insertions, 104 deletions
diff --git a/pages/functional-analysis-basics/the-fundamental-four/hahn-banach-theorem.md b/pages/functional-analysis-basics/the-fundamental-four/hahn-banach-theorem.md
index 9d21d41..18cf64a 100644
--- a/pages/functional-analysis-basics/the-fundamental-four/hahn-banach-theorem.md
+++ b/pages/functional-analysis-basics/the-fundamental-four/hahn-banach-theorem.md
@@ -6,6 +6,7 @@ nav_order: 1
---
# {{ page.title }}
+{: .no_toc }
In fact, there are multiple theorems and corollaries
which bear the name Hahn–Banach.
@@ -13,111 +14,112 @@ All have in common that
they guarantee the existence of linear functionals
with various additional properties.
-{: .definition-title }
-> Definition (Sublinear Functional)
->
-> A functional $p$ on a real vector space $X$
-> is called *sublinear* if it is
-> {: .mb-0 }
->
-> {: .mt-0 .mb-0 }
-> - *positive-homogenous*, that is
-> {: .mt-0 .mb-0 }
->
-> $$
-> p(\alpha x) = \alpha \, p(x) \qquad \forall \alpha \ge 0, \ \forall x \in X,
-> $$
->
-> - and satisfies the *triangle inequality*
-> {: .mt-0 .mb-0 }
->
-> $$
-> p(x+y) \le p(x) + p(y) \qquad \forall x,y \in X.
-> $$
-> {: .katex-display .mb-0 }
+<details open markdown="block">
+ <summary>
+ Table of contents
+ </summary>
+ {: .text-delta }
+- TOC
+{:toc}
+</details>
+
+{% definition Sublinear Functional %}
+A functional $p$ on a real vector space $X$
+is called *sublinear* if it is
+{: .mb-0 }
+
+{: .mt-0 .mb-0 }
+- *positively homogenous*, that is
+ {: .mt-0 .mb-0 }
+
+ $$
+ p(\alpha x) = \alpha \, p(x) \qquad \forall \alpha \ge 0, \ \forall x \in X,
+ $$
+
+- and *subadditive*, that is
+ {: .mt-0 .mb-0 }
+
+$$
+p(x+y) \le p(x) + p(y) \qquad \forall x,y \in X.
+$$
+{% enddefinition %}
If $p$ is a sublinear functional,
then $p(0)=0$ and $p(-x) \ge -p(x)$ for all $x$.
Every norm on a real vector space is a sublinear functional.
-{: .theorem-title }
-> {{ page.title }} (Basic Version)
->
-> Let $p$ be a sublinear functional on a real vector space $X$.
-> Then there exists a linear functional $f$ on $X$ satisfying
-> $f(x) \le p(x)$ for all $x \in X$.
+{% theorem * Hahn–Banach Theorem (Basic Version) %}
+Let $p$ be a sublinear functional on a real vector space $X$.
+Then there exists a linear functional $f$ on $X$ satisfying
+$f(x) \le p(x)$ for all $x \in X$.
+{% endtheorem %}
## Extension Theorems
-{: .theorem-title }
-> {{ page.title }} (Extension, Real Vector Spaces)
->
-> Let $p$ be a sublinear functional on a real vector space $X$.
-> Let $f$ be a linear functional
-> which is defined on a linear subspace $Z$ of $X$
-> and satisfies
->
-> $$
-> f(x) \le p(x) \qquad \forall x \in Z.
-> $$
->
-> Then $f$ has a linear extension $\tilde{f}$ to $X$ such that
->
-> $$
-> \tilde{f}(x) \le p(x) \qquad \forall x \in X.
-> $$
+{% theorem * Hahn–Banach Theorem (Extension, Real Vector Spaces) %}
+Let $p$ be a sublinear functional on a real vector space $X$.
+Let $f$ be a linear functional
+which is defined on a linear subspace $Z$ of $X$
+and satisfies
+
+$$
+f(x) \le p(x) \qquad \forall x \in Z.
+$$
+
+Then $f$ has a linear extension $\tilde{f}$ to $X$ such that
+
+$$
+\tilde{f}(x) \le p(x) \qquad \forall x \in X.
+$$
+{% endtheorem %}
{% proof %}
{% endproof %}
-{: .definition-title }
-> Definition (Semi-Norm)
->
-> We call a real-valued functional $p$ on a real or complex vector space $X$
-> a *semi-norm* if it is
-> {: .mb-0 }
->
-> {: .mt-0 .mb-0 }
-> - *absolutely homogenous*, that is
-> {: .mt-0 .mb-0 }
->
-> $$
-> p(\alpha x) = \abs{\alpha} \, p(x) \qquad \forall \alpha \in \KK \ \forall x \in X,
-> $$
-> - and satisfies the *triangle inequality*
-> {: .mt-0 .mb-0 }
->
-> $$
-> p(x+y) \le p(x) + p(y) \qquad \forall x,y \in X.
-> $$
-> {: .katex-display .mb-0 }
-
-{: .theorem-title }
-> {{ page.title }} (Extension, Real and Complex Vector Spaces)
->
-> Let $p$ be a semi-norm on a real or complex vector space $X$.
-> Let $f$ be a linear functional
-> which is defined on a linear subspace $Z$ of $X$
-> and satisfies
->
-> $$
-> \abs{f(x)} \le p(x) \qquad \forall x \in Z.
-> $$
->
-> Then $f$ has a linear extension $\tilde{f}$ to $X$ such that
->
-> $$
-> \abs{\tilde{f}(x)} \le p(x) \qquad \forall x \in X.
-> $$
-
-{: .theorem-title }
-> {{ page.title }} (Extension, Normed Spaces)
->
-> Let $X$ be a real or complex normed space
-> and let $f$ be a bounded linear functional
-> defined on a linear subspace $Z$ of $X$.
-> Then $f$ has a bounded linear extension $\tilde{f}$ to $X$ such that $\norm{\tilde{f}} = \norm{f}$.
+{% definition Semi-Norm %}
+We call a real-valued functional $p$ on a real or complex vector space $X$
+a *semi-norm* if it is
+{: .mb-0 }
+
+{: .mt-0 .mb-0 }
+- *absolutely homogenous*, that is
+ {: .mt-0 .mb-0 }
+
+ $$
+ p(\alpha x) = \abs{\alpha} \, p(x) \qquad \forall \alpha \in \KK \ \forall x \in X,
+ $$
+- and satisfies the *triangle inequality*
+ {: .mt-0 .mb-0 }
+
+ $$
+ p(x+y) \le p(x) + p(y) \qquad \forall x,y \in X.
+ $$
+{% enddefinition %}
+
+{% theorem * Hahn–Banach Theorem (Extension, Real and Complex Vector Spaces) %}
+Let $p$ be a semi-norm on a real or complex vector space $X$.
+Let $f$ be a linear functional
+which is defined on a linear subspace $Z$ of $X$
+and satisfies
+
+$$
+\abs{f(x)} \le p(x) \qquad \forall x \in Z.
+$$
+
+Then $f$ has a linear extension $\tilde{f}$ to $X$ such that
+
+$$
+\abs{\tilde{f}(x)} \le p(x) \qquad \forall x \in X.
+$$
+{% endtheorem %}
+
+{% theorem * Hahn–Banach Theorem (Extension, Normed Spaces) %}
+Let $X$ be a real or complex normed space
+and let $f$ be a bounded linear functional
+defined on a linear subspace $Z$ of $X$.
+Then $f$ has a bounded linear extension $\tilde{f}$ to $X$ such that $\norm{\tilde{f}} = \norm{f}$.
+{% endtheorem %}
{% proof %}
We apply the preceding theorem with $p(x) = \norm{f} \norm{x}$
@@ -131,17 +133,66 @@ Corollaries
Important consequence: canonical embedding into bidual
+{% theorem * Hahn–Banach Theorem (Existence of Functionals) %}
+Let $X$ be a real or complex normed space
+and let $x$ be a nonzero element of $X$.
+Then there exists a bounded linear functional $f$ on $X$
+with $f(x) = \norm{x}$ and $\norm{f} = 1$.
+{% endtheorem %}
+
+{% proof %}
+On the linear subspace $\KK x \subset X$ spanned by $x$
+we define a functional $f_0$ by $f_0(\alpha x) = \alpha \norm{x}$ for $\alpha \in \KK$.
+It is easy to check that $f_0$ is linear and bounded with norm $\norm{f_0} = 1$.
+By the Hahn–Banach Extension Theorem for Normed Spaces,
+there exists a bounded linear functional $f$ on $X$ extending $f_0$ with identical norm.
+Hence we have $f(x) = f_0(x) = \norm{x}$ and $\norm{f} = \norm{f_0} = 1$.
+{% endproof %}
+
+Recall that for a normed space $X$ we denote its (topological) dual space by $X'$.
+
+{% corollary %}
+For every element $x$ of a real or complex normed space $X$ one has
+
+$$
+\norm{x} = \sup_{f \in X' \setminus \braces{0}} \frac{\abs{f(x)}}{\norm{f}}
+$$
+
+and the supremum is attained.
+{% endcorollary %}
+
+{% corollary %}
+The elements of a real or complex normed space $X$
+are separated by the elements of its dual $X'$.
+{% endcorollary %}
+
## Separation Theorems
-{: .theorem-title }
-> {{ page.title }} (Separation, Point and Closed Subspace)
->
-> Suppose $Z$ is a closed subspace
-> of a normed space $X$ and $x$ lies in $X \setminus Z$.
-> Then there exists a bounded linear functional on $X$
-> which vanishes on $Z$ but has a nonzero value at $x$.
-
-{: .theorem-title }
-> {{ page.title }} (Separation, Convex Sets)
->
-> TODO
+{% theorem * Hahn–Banach Theorem (Separation, Point and Closed Subspace) %}
+Suppose $Z$ is a closed subspace of a normed space $X$
+and $x$ lies in $X \setminus Z$.
+Then there exists a bounded linear functional $f$ on $X$
+vanishing on $Z$ and with nonzero value $f(x) = \dist{x,Z}$.
+{% endtheorem %}
+
+{% proof %}
+Since $Z$ is a closed subspace of $X$,
+the quotient vector space $X/Z$ becomes a normed space
+with the quotient norm given by
+
+$$
+\norm{y + Z} = \dist{y,Z} = \inf_{z \in Z} \norm{y-z} \quad \forall y \in X.
+$$
+
+Moreover, the canonical mapping $\pi : X \to X/Z$, $y \mapsto y+Z$, is bounded.
+Given a $x \in X$ that does not lie in $Z$, the null space of $\pi$,
+we see that $\pi(x)$ is a nonzero element of $X/Z$.
+By Hahn–Banach, there exists a bounded linear functional $g$ on $X/Z$
+with $g(\pi(x)) = \norm{x} = \dist{x,Z} \ne 0$.
+Now the composition $f = g \circ \pi$ is a bounded functional on $X$
+with the desired properties.
+{% endproof %}
+
+{% theorem * Hahn–Banach Theorem (Separation, Convex Sets) %}
+TODO
+{% endtheorem %}