summaryrefslogtreecommitdiffstats
path: root/pages/measure-and-integration/lebesgue-integral
diff options
context:
space:
mode:
Diffstat (limited to 'pages/measure-and-integration/lebesgue-integral')
-rw-r--r--pages/measure-and-integration/lebesgue-integral/almost-everywhere.md27
-rw-r--r--pages/measure-and-integration/lebesgue-integral/convergence-theorems.md77
-rw-r--r--pages/measure-and-integration/lebesgue-integral/fubini-theorem.md14
-rw-r--r--pages/measure-and-integration/lebesgue-integral/index.md112
-rw-r--r--pages/measure-and-integration/lebesgue-integral/the-lp-spaces.md36
-rw-r--r--pages/measure-and-integration/lebesgue-integral/transformation-formula.md14
6 files changed, 280 insertions, 0 deletions
diff --git a/pages/measure-and-integration/lebesgue-integral/almost-everywhere.md b/pages/measure-and-integration/lebesgue-integral/almost-everywhere.md
new file mode 100644
index 0000000..a77cf9a
--- /dev/null
+++ b/pages/measure-and-integration/lebesgue-integral/almost-everywhere.md
@@ -0,0 +1,27 @@
+---
+title: Almost Everywhere
+parent: Lebesgue Integral
+grand_parent: Measure and Integration
+nav_order: 1
+---
+
+# {{ page.title }}
+
+{% definition Almost Everywhere %}
+We say that a property $P(x)$ depending on $x \in X$
+holds *almost everywhere* (abbreviated by *a.e.*) or for *almost all $x \in X$* if
+the set of points where it does not hold has measure zero.
+{% enddefinition %}
+
+In other words, $P(x)$ a.e. iff
+$\mu(\set{x \in X : \neg P(x)}) = 0$.
+
+{% theorem %}
+Let $f : X \to \overline{\RR}$ be a nonnegative measurable function. Then
+
+$$
+\int_X f \, d\mu = 0
+$$
+
+holds if and only if $f$ vanishes almost everywhere.
+{% endtheorem %}
diff --git a/pages/measure-and-integration/lebesgue-integral/convergence-theorems.md b/pages/measure-and-integration/lebesgue-integral/convergence-theorems.md
new file mode 100644
index 0000000..67f0996
--- /dev/null
+++ b/pages/measure-and-integration/lebesgue-integral/convergence-theorems.md
@@ -0,0 +1,77 @@
+---
+title: Convergence Theorems
+parent: Lebesgue Integral
+grand_parent: Measure and Integration
+nav_order: 2
+---
+
+# {{ page.title }}
+
+For all statements on this page,
+assume that $(X,\mathcal{A},\mu)$ is a measure space.
+
+{% theorem * Monotone Convergence Theorem %}
+For each $n \in \NN$ let $f_n : X \to \overline{\RR}$ be a measurable function.
+If $0 \le f_n \le f_{n+1}$ almost everywhere, then
+
+$$
+\int_X \lim_{n \to \infty} f_n \, d\mu = \lim_{n \to \infty} \int_X f_n \, d\mu.
+$$
+{% endtheorem %}
+
+Note that the pointwise limit $\lim_{n \to \infty} f_n$ always exists and is measurable by this proposition.
+
+{% lemma * Fatou’s Lemma %}
+For each $n \in \NN$ let $f_n : X \to \overline{\RR}$ be a nonnegative measurable function. Then
+
+$$
+\int_X \liminf_{n \to \infty} f_n \, d\mu \le \liminf_{n \to \infty} \int_X f_n \, d\mu.
+$$
+{% endlemma %}
+
+In the following proof we omit $X$ and $d\mu$ for visual clarity.
+
+{% proof %}
+By definition, we have $\liminf_{n \to \infty} f_n = \lim_{n \to \infty} g_n$, where $g_n = \inf_{k \ge n} f_k$.
+Now $(g_n)$ is a monotonic sequence of nonnegative measurable functions.
+By the
+[Monotone Convergence Theorem](#monotone-convergence-theorem)
+
+$$
+\int \liminf_{n \to \infty} f_n = \lim_{n \to \infty} \int g_n.
+$$
+
+For all $k \ge n$ one has $g_n \le f_k$, hence
+$\int g_n \le \int f_k$ by the monotonicity of the integral.
+This implies
+
+$$
+\int g_n \le \inf_{k \ge n} \int f_k
+$$
+
+for all $n \in \NN$. In the limit $n \to \infty$ we obtain
+
+$$
+\lim_{n \to \infty} \int g_n
+\le \liminf_{n \to \infty} \int f_n
+$$
+
+thereby completing the proof.
+{% endproof %}
+
+{% theorem * Dominated Convergence Theorem %}
+Let $(X,\mathcal{A},\mu)$ be a measure space.
+For each $n \in \NN$ let $f_n : X \to \overline{\RR}$ (or $\CC$) be a measurable function.
+Suppose that the pointwise limit $f = \lim_{n \to \infty} f_n$ exists almost everywhere.
+Suppose further that there exists an integrable function $g : X \to \overline{\RR}$
+such that $\abs{f_n} \le g$ almost everywhere for all $n \in \NN$.
+Then the functions $f_n$ and $f$ are all integrable, and
+
+$$
+\lim_{n \to \infty} \int_X f_n \, d\mu = \int_X f \, d\mu.
+$$
+{% endtheorem %}
+
+{% proof %}
+TODO
+{% endproof %}
diff --git a/pages/measure-and-integration/lebesgue-integral/fubini-theorem.md b/pages/measure-and-integration/lebesgue-integral/fubini-theorem.md
new file mode 100644
index 0000000..6e5179c
--- /dev/null
+++ b/pages/measure-and-integration/lebesgue-integral/fubini-theorem.md
@@ -0,0 +1,14 @@
+---
+title: Fubini Theorem
+parent: Lebesgue Integral
+grand_parent: Measure and Integration
+nav_order: 2
+---
+
+# {{ page.title }}
+
+{% theorem %}
+{% endtheorem %}
+
+{% proof %}
+{% endproof %}
diff --git a/pages/measure-and-integration/lebesgue-integral/index.md b/pages/measure-and-integration/lebesgue-integral/index.md
new file mode 100644
index 0000000..a857d95
--- /dev/null
+++ b/pages/measure-and-integration/lebesgue-integral/index.md
@@ -0,0 +1,112 @@
+---
+title: Lebesgue Integral
+parent: Measure and Integration
+nav_order: 2
+has_children: true
+has_toc: false
+---
+
+# {{ page.title }}
+
+For this entire section we fix a measure space $(X,\mathcal{A},\mu)$.
+
+## Integration of Nonnegative Step Functions
+
+{% definition %}
+Let $f : X \to \RR$ be a nonnegative step function
+with representation $f = \sum_{i=1}^n \alpha_i \chi_{A_i}$,
+where $\alpha_1, \ldots, \alpha_n \ge 0$ and
+$A_1, \ldots, A_n \in \mathcal{A}$.
+We define the *integral of $f$ on $X$ with respect to $\mu$* by
+
+$$
+\int_X f \, d\mu = \sum_{i=1}^n \alpha_i \, \mu(A_i) \in [0,\infty].
+$$
+{% enddefinition %}
+
+TODO: This does not depend on the representation of $f$.
+
+## Integration of Nonnegative Measurable Functions
+
+{% theorem Approximation by Step Functions %}
+Every nonnegative measurable function $f : X \to \overline{\RR}$
+is the pointwise limit of an increasing sequence $(s_n)$ of
+nonnegative step functions $s_n : X \to \RR$.
+{% endtheorem %}
+
+{% definition %}
+Let $f : X \to \overline{\RR}$ be a nonnegative measurable function
+and let $(s_n)$ be a sequence of nonnegative step functions
+with $s_n \uparrow f$.
+We define the *integral of $f$ on $X$ with respect to $\mu$* by
+
+$$
+\int_X f \, d\mu = \lim_{n \to \infty} \int_X s_n \, d\mu \in [0,\infty].
+$$
+{% enddefinition %}
+
+## Integrable Functions
+
+Recall that the positive and (flipped) negative parts
+of a function $f : X \to \overline{R}$ are defined by
+
+$$
+f^+ = \max(f,0) \qquad
+f^- = \max(-f,0),
+$$
+
+and that $f$ is measurable if and only if both $f^+$ and $f^-$ are measurable.
+We have $f = f^+\! - f^-$.
+
+{% definition Integrable Function, Lebesgue Integral %}
+A measurable function $f : X \to \overline{\RR}$ is said to be
+*integrable on $X$ with respect to $\mu$* if the integrals
+
+$$
+\int_X f^+ \, d\mu, \qquad \int_X f^- \, d\mu
+\tag{$*$}
+$$
+
+are both finite.
+In this case the *(Lebesgue) integral of $f$ on $X$ with respect to $\mu$* is defined as
+
+$$
+\int_X f \, d\mu = \int_X f^+ \, d\mu - \int_X f^- \, d\mu \in \RR.
+$$
+{% enddefinition %}
+
+Sometimes it is convenient to have a slightly more general notion of integrability:
+
+{% definition Quasi-Integrable Function %}
+A measurable function $f : X \to \overline{\RR}$ is said to be
+*quasi-integrable on $X$ with respect to $\mu$* if at least one of the integrals
+$(*)$ is finite.
+In this case the *integral of $f$ on $X$ with respect to $\mu$* is defined as
+
+$$
+\int_X f \, d\mu = \int_X f^+ \, d\mu - \int_X f^- \, d\mu \in \overline{\RR}.
+$$
+{% enddefinition %}
+
+{% definition %}
+A measurable function $f : X \to \CC$ is said to be
+*integrable on $X$ with respect to $\mu$* if
+$\Re f$ and $\Im f$ are integrable on $X$ with respect to $\mu$.
+In this case the *integral of $f$ on $X$ with respect to $\mu$* is defined as
+
+$$
+\int_X f \, d\mu = \int_X \Re f \, d\mu + i \int_X \Im f \, d\mu \in \CC.
+$$
+{% enddefinition %}
+
+## Integration on Measurable Subsets
+
+{% definition %}
+For any measurable subset $A \subset X$ we define
+the *integral on $A$* of a (quasi-)integrable function $f : X \to \overline{\RR}$ (or $\CC$) by
+
+$$
+\int_A f \, d\mu =
+\int_X \chi_A f \, d\mu.
+$$
+{% enddefinition %}
diff --git a/pages/measure-and-integration/lebesgue-integral/the-lp-spaces.md b/pages/measure-and-integration/lebesgue-integral/the-lp-spaces.md
new file mode 100644
index 0000000..023c253
--- /dev/null
+++ b/pages/measure-and-integration/lebesgue-integral/the-lp-spaces.md
@@ -0,0 +1,36 @@
+---
+title: The L<sup>p</sup> Spaces
+parent: Lebesgue Integral
+grand_parent: Measure and Integration
+nav_order: 4
+---
+
+# {{ page.title }}
+
+{% definition %}
+Let $(X,\mathcal{A},\mu)$ be a measure space and let $p \in [1,\infty)$.
+We write $\mathscr{L}^p(X,\mathcal{A},\mu)$ for the set of all
+measurable functions $f : X \to \KK$ such that $\abs{f}^p$ is integrable.
+For such $f$ we write
+
+$$
+\norm{f}_p = {\bigg\lparen\int_X \abs{f}^p \, d\mu\bigg\rparen}^{\!1/p}.
+$$
+{% enddefinition %}
+
+{% proposition %}
+Endowed with pointwise addition and scalar multiplication
+$\mathscr{L}^p(X,\mathcal{A},\mu)$ becomes a vector space.
+{% endproposition %}
+
+{% proposition %}
+$\norm{\cdot}_p$ is a seminorm on $\mathscr{L}^p(X,\mathcal{A},\mu)$.
+{% endproposition %}
+
+{% theorem * Young Inequality %}
+Consider $p,q > 1$ such that $1/p + 1/q = 1$. Then
+
+$$
+a \cdot b \le \frac{a^p}{p} + \frac{b^q}{q} \qquad \forall a,b \ge 0.
+$$
+{% endtheorem %}
diff --git a/pages/measure-and-integration/lebesgue-integral/transformation-formula.md b/pages/measure-and-integration/lebesgue-integral/transformation-formula.md
new file mode 100644
index 0000000..6f02bc8
--- /dev/null
+++ b/pages/measure-and-integration/lebesgue-integral/transformation-formula.md
@@ -0,0 +1,14 @@
+---
+title: Transformation Formula
+parent: Lebesgue Integral
+grand_parent: Measure and Integration
+nav_order: 3
+---
+
+# {{ page.title }}
+
+{% theorem %}
+{% endtheorem %}
+
+{% proof %}
+{% endproof %}