summaryrefslogtreecommitdiffstats
path: root/pages/operator-algebras
diff options
context:
space:
mode:
Diffstat (limited to 'pages/operator-algebras')
-rw-r--r--pages/operator-algebras/banach-algebras/index.md42
-rw-r--r--pages/operator-algebras/c-star-algebras/positive-linear-functionals.md4
-rw-r--r--pages/operator-algebras/c-star-algebras/states.md17
3 files changed, 37 insertions, 26 deletions
diff --git a/pages/operator-algebras/banach-algebras/index.md b/pages/operator-algebras/banach-algebras/index.md
index 3335d78..9d70df8 100644
--- a/pages/operator-algebras/banach-algebras/index.md
+++ b/pages/operator-algebras/banach-algebras/index.md
@@ -80,7 +80,7 @@ $$
(\mathbf{1}-x) s_n = s_n (\mathbf{1}-x) = \mathbf{1} - x^{n+1}.
$$
-In the limit $n \to \infty$ we obtain $(\mathbf{1}-x) s = s (\mathbf{1}-x) = \mathbf{1}$,
+In the limit $n \to \infty$ we obtain $(\mathbf{1}-x) s = s (\mathbf{1}-x) = \mathbf{1}$,
because multiplication in a Banach algebra is continuous, and because $y^n \to 0$ when $\norm{y} < 1$.
This proves that $s$ is the inverse of $\mathbf{1}-x$.
@@ -94,10 +94,12 @@ Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$.
{: .mb-0 }
{: .my-0 }
-- The *spectrum* of $x$ is the set $\sigma(x) = \lbrace\lambda \in \CC : x - \lambda$ is not invertible in $\mathcal{A}\rbrace$. \
+- The *spectrum* of $x$ is the set
+ $\sigma(x) = \lbrace\lambda \in \CC : x - \lambda$ is not invertible in $\mathcal{A}\rbrace$. \
The elements of $\sigma(x)$ are called *spectral values* of $x$.
- The *resolvent set* of $x$ is the set $\rho (x) = \CC \setminus \sigma(x)$. \
- For $\lambda \in \rho(x)$ the *resolvent* of $x$ is the algebra element $R_{\lambda} = (\lambda - x)^{-1}$. \
+ For $\lambda \in \rho(x)$ the *resolvent* of $x$ is
+ the algebra element $R_{\lambda} = (\lambda - x)^{-1}$. \
The mapping $R : \rho(x) \to \mathcal{A}$, $\lambda \mapsto R_{\lambda}$, is called *resolvent map*.
{% enddefinition %}
@@ -119,7 +121,7 @@ $$
{% proof %}
Let $\lambda$ be in the resolvent set of $x$.
-Then $\lambda - x$ is invertible, and we have for all $\mu \in \CC$
+Then $\lambda - x$ is invertible, and we have for all $\mu \in \CC$
$$
\mu - x = \bigl(\mathbf{1} - (\lambda - \mu) (\lambda - x)^{-1}\bigr) (\lambda - x).
@@ -138,20 +140,22 @@ the claimed formula for its inverse follows by an application of
the rule $(ab)^{-1} = b^{-1} a^{-1}$ for invertible $a,b \in \mathcal{A}$.
{% endproof %}
-{: .corollary #resolvent-set-is-open #spectrum-is-closed }
-> The resolvent set $\rho(x)$ is open and the spectrum $\sigma(x)$ is closed.
+{% corollary %}
+The resolvent set $\rho(x)$ is open and the spectrum $\sigma(x)$ is closed.
+{% endcorollary %}
-{: .corollary #resolvent-map-is-analytic }
-> Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$.
-> The resolvent map
->
-> $$
-> R : \rho(x) \longrightarrow \mathcal{A}, \quad \lambda \longmapsto R_{\lambda} = (\lambda - x)^{-1},
-> $$
->
-> is (strongly) analytic.
+{% corollary %}
+Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$.
+The resolvent map
+
+$$
+R : \rho(x) \longrightarrow \mathcal{A}, \quad \lambda \longmapsto R_{\lambda} = (\lambda - x)^{-1},
+$$
+
+is (strongly) analytic.
+{% endcorollary %}
- ---
+---
{: .proposition #spectrum-is-not-empty }
> Suppose $x$ is an element of a unital Banach algebra.
@@ -169,7 +173,7 @@ For $\abs{\lambda} > 2 \norm{x}$ we may expand $R_{\lambda}$ into a [Neumann ser
$$
R_{\lambda}
= (\lambda - x)^{-1}
-= \lambda^{-1} (\mathbf{1} - \lambda^{-1} x)^{-1}
+= \lambda^{-1} (\mathbf{1} - \lambda^{-1} x)^{-1}
= \lambda^{-1} \sum_{n=0}^{\infty} (\lambda^{-1} x)^n,
$$
@@ -177,7 +181,7 @@ and make the estimate
$$
\norm{R_{\lambda}}
-\le \abs{\lambda}^{-1} (1 - \norm{\lambda^{-1} x})^{-1}
+\le \abs{\lambda}^{-1} (1 - \norm{\lambda^{-1} x})^{-1}
= (\abs{\lambda} - \norm{x})^{-1}
< \norm{x}^{-1}.
$$
@@ -197,7 +201,7 @@ For any Banach algebra $A$,
the mapping $\varphi : \CC \to A$, $\lambda \mapsto \lambda \mathbf{1}$,
is linear, multiplicative and isometric, hence injective.
Let $x$ be any element of $A$.
-Since its
+Since its
[spectrum is not empty](/pages/operator-algebras/banach-algebras/index.html#spectrum-is-not-empty),
there must exist a complex number $\lambda$
such that $x - \lambda \mathbf{1}$ is not invertible.
diff --git a/pages/operator-algebras/c-star-algebras/positive-linear-functionals.md b/pages/operator-algebras/c-star-algebras/positive-linear-functionals.md
index ea15f87..bdf7b3d 100644
--- a/pages/operator-algebras/c-star-algebras/positive-linear-functionals.md
+++ b/pages/operator-algebras/c-star-algebras/positive-linear-functionals.md
@@ -22,7 +22,9 @@ A norm-one positive linear functional on a $C^*$-algebra is called a *state*.
{% enddefinition %}
{% definition State Space %}
-The *state space* of a $C^*$-algebra $\mathcal{A}$, denoted by $S(\mathcal{A})$, is the set of all states of $\mathcal{A}$.
+The *state space* of a $C^*$-algebra $\mathcal{A}$,
+denoted by $S(\mathcal{A})$,
+is the set of all states of $\mathcal{A}$.
{% enddefinition %}
Note that $S(\mathcal{A})$ is a subset of the unit ball in the dual space of $\mathcal{A}$.
diff --git a/pages/operator-algebras/c-star-algebras/states.md b/pages/operator-algebras/c-star-algebras/states.md
index 29cf5f5..a483915 100644
--- a/pages/operator-algebras/c-star-algebras/states.md
+++ b/pages/operator-algebras/c-star-algebras/states.md
@@ -8,7 +8,9 @@ nav_order: 1
# {{ page.title }}
{% definition State, State Space %}
-A norm-one [positive linear functional]( {% link pages/operator-algebras/c-star-algebras/positive-linear-functionals.md %} ) on a C\*-algebra is called a *state*.\
+A norm-one
+[positive linear functional](/pages/operator-algebras/c-star-algebras/positive-linear-functionals.html)
+on a C\*-algebra is called a *state*.\
The *state space* $S(\mathcal{A})$ of a C\*-algebra $\mathcal{A}$ is the set of all its states.
{% enddefinition %}
@@ -30,20 +32,23 @@ Let $\omega_0, \omega_1$ be states on $\mathcal{A}$ and let $t \in (0,1)$.
Consider the convex combination $\omega = (1-t)\omega_0 + t\omega_1$.
Clearly, $\omega$ is linear and $\omega(\mathbf{1}) = 1$.
By the triangle inequality, $\norm{\omega} \le 1$.
-It follows from the lemma above that $\omega$ lies in $S(\mathcal{A})$. This proves that $S(\mathcal{A})$ is convex.
+It follows from the lemma above that $\omega$ lies in $S(\mathcal{A})$.
+This proves that $S(\mathcal{A})$ is convex.
Next we show weak\* compactness. Since $S(\mathcal{A})$ is contained
in the closed unit ball in the dual of $\mathcal{A}$,
which is weak\* compact by the
-[Banach–Alaoglu Theorem]({% link pages/functional-analysis-basics/banach-alaoglu-theorem.md %}),
+[Banach–Alaoglu Theorem](/pages/functional-analysis-basics/banach-alaoglu-theorem.html),
it will suffice to show that $S(\mathcal{A})$ is weak\* closed.
-Let $(\omega_i)$ be a net of states that weak\* converges to some bounded linear functional $\omega$ on $\mathcal{A}$.
+Let $(\omega_i)$ be a net of states
+that weak\* converges to some bounded linear functional $\omega$ on $\mathcal{A}$.
This means that $\omega_i(x) \to \omega(x)$ for every $x \in \mathcal{A}$.
-For all $i$ we have $\omega_i(x) \ge 0$ for $x \ge 0$ and $\omega_i(\mathbf{1}) = 1$; hence $\omega(x) \ge 0$ for $x \ge 0$ and $\omega(\mathbf{1}) = 1$. Thus $\omega$ is again a state.
+For all $i$ we have $\omega_i(x) \ge 0$ for $x \ge 0$ and $\omega_i(\mathbf{1}) = 1$;
+hence $\omega(x) \ge 0$ for $x \ge 0$ and $\omega(\mathbf{1}) = 1$.
+Thus, $\omega$ is again a state.
This shows that the state space is weak* closed, completing the proof.
{% endproof %}
TODO: state space is nonempty
TODO: pure states
-