summaryrefslogtreecommitdiffstats
path: root/pages/unbounded-operators
diff options
context:
space:
mode:
Diffstat (limited to 'pages/unbounded-operators')
-rw-r--r--pages/unbounded-operators/adjoint-operators.md2
-rw-r--r--pages/unbounded-operators/graph-and-closedness.md15
-rw-r--r--pages/unbounded-operators/hellinger-toeplitz-theorem.md10
-rw-r--r--pages/unbounded-operators/quadratic-forms.md15
4 files changed, 13 insertions, 29 deletions
diff --git a/pages/unbounded-operators/adjoint-operators.md b/pages/unbounded-operators/adjoint-operators.md
index a93e6d4..1b9fb0c 100644
--- a/pages/unbounded-operators/adjoint-operators.md
+++ b/pages/unbounded-operators/adjoint-operators.md
@@ -7,8 +7,6 @@ description: >
The Hellinger–Toeplitz Theorem states that an everywhere-defined symmetric
operator on a Hilbert space is bounded. We give a proof using the Uniform
Boundedness Theorem. We give another proof using the Closed Graph Theorem.
-# spellchecker:dictionaries latex
-# spellchecker:words Hellinger Toeplitz innerp hilb Schwarz functionals enspace Riesz
---
# {{ page.title }}
diff --git a/pages/unbounded-operators/graph-and-closedness.md b/pages/unbounded-operators/graph-and-closedness.md
index a9bf738..04a6789 100644
--- a/pages/unbounded-operators/graph-and-closedness.md
+++ b/pages/unbounded-operators/graph-and-closedness.md
@@ -6,17 +6,12 @@ description: >
The Hellinger–Toeplitz Theorem states that an everywhere-defined symmetric
operator on a Hilbert space is bounded. We give a proof using the Uniform
Boundedness Theorem. We give another proof using the Closed Graph Theorem.
-# spellchecker:dictionaries latex
-# spellchecker:words Hellinger Toeplitz innerp hilb Schwarz functionals enspace Riesz
---
# {{ page.title }}
-
-{: .definition-title }
-
-> Definition (Graph of an Operator)
->
-> The *graph* of an operator $T$ in a Hilbert space $\hilb{H}$
-> is the set of all pairs $(x,y) \in \hilb{H}\times\hilb{H}$
-> where $x$ lies in the domain of $T$ and $y=Tx$.
+{% definition Graph of an Operator %}
+The *graph* of an operator $T$ in a Hilbert space $\hilb{H}$
+is the set of all pairs $(x,y) \in \hilb{H}\times\hilb{H}$
+where $x$ lies in the domain of $T$ and $y=Tx$.
+{% enddefinition %}
diff --git a/pages/unbounded-operators/hellinger-toeplitz-theorem.md b/pages/unbounded-operators/hellinger-toeplitz-theorem.md
index 07d6b81..fea54be 100644
--- a/pages/unbounded-operators/hellinger-toeplitz-theorem.md
+++ b/pages/unbounded-operators/hellinger-toeplitz-theorem.md
@@ -6,7 +6,6 @@ description: >
The Hellinger–Toeplitz Theorem states that an everywhere-defined symmetric
operator on a Hilbert space is bounded. We give a proof using the Uniform
Boundedness Theorem. We give another proof using the Closed Graph Theorem.
-# cspell:words Hellinger Toeplitz Schwarz Riesz functionals
---
# {{ page.title }}
@@ -25,10 +24,9 @@ $$
\innerp{Tx}{y} = \innerp{x}{Ty} \quad \forall x,y \in D(T).
$$
-{: .theorem-title }
-> Hellinger–Toeplitz theorem
->
-> An everywhere-defined symmetric operator on a Hilbert space is bounded.
+{% theorem * Hellinger–Toeplitz Theorem %}
+An everywhere-defined symmetric operator on a Hilbert space is bounded.
+{% endtheorem %}
Consequently, a symmetric Hilbert space operator
that is (truly) unbounded
@@ -75,7 +73,6 @@ Divide by $\norm{Tx_n}$ (if nonzero)
to obtain $\norm{Tx_n} \le \norm{f_n}$ for all but finitely many $n$.
Thus $(\norm{Tx_n})$ is a bounded sequence,
contradicting $\norm{Tx_n} \to \infty$.
-{{ site.qed }}
---
@@ -113,4 +110,3 @@ $$
A sequence of complex numbers has at most one limit,
hence $\innerp{Tx}{y} = \innerp{z}{y}$ for all $y$.
By the Riesz representation theorem, $Tx=z$.
-{{ site.qed }}
diff --git a/pages/unbounded-operators/quadratic-forms.md b/pages/unbounded-operators/quadratic-forms.md
index 5831b88..cb1c44a 100644
--- a/pages/unbounded-operators/quadratic-forms.md
+++ b/pages/unbounded-operators/quadratic-forms.md
@@ -7,17 +7,12 @@ description: >
The Hellinger–Toeplitz Theorem states that an everywhere-defined symmetric
operator on a Hilbert space is bounded. We give a proof using the Uniform
Boundedness Theorem. We give another proof using the Closed Graph Theorem.
-# spellchecker:dictionaries latex
-# spellchecker:words Hellinger Toeplitz innerp hilb Schwarz functionals enspace Riesz
---
# {{ page.title }}
-
-{: .definition-title }
-
-> Definition (Graph of an Operator)
->
-> The *graph* of an operator $T$ in a Hilbert space $\hilb{H}$
-> is the set of all pairs $(x,y) \in \hilb{H}\times\hilb{H}$
-> where $x$ lies in the domain of $T$ and $y=Tx$.
+{% definition Graph of an Operator %}
+The *graph* of an operator $T$ in a Hilbert space $\hilb{H}$
+is the set of all pairs $(x,y) \in \hilb{H}\times\hilb{H}$
+where $x$ lies in the domain of $T$ and $y=Tx$.
+{% enddefinition %}