summaryrefslogtreecommitdiffstats
path: root/pages/complex-analysis/one-complex-variable/cauchys-theorem.md
blob: 15412bcd2abe472ae88e457a62ce63081e2151b8 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
---
title: Cauchy's Theorem
parent: One Complex Variable
grand_parent: Complex Analysis
nav_order: 2
# cspell:words
---

# {{ page.title }}

{: .theorem-title }
> {{ page.title }} (Homotopy Version)
>
> Let $G$ be a connected open subset of the complex plane.
> Let $f : G \to \CC$ be a holomorphic function.
> If $\gamma_0$, $\gamma_1$ are homotopic closed curves in $G$, then
>
> $$
> \int_{\gamma_0} \! f(z) \, dz =
> \int_{\gamma_1} \! f(z) \, dz 
> $$
>
> If $\gamma$ is a null-homotopic closed curve in $G$, then
>
> $$
> \int_{\gamma} f(z) \, dz = 0
> $$

{% proof %}
{% endproof %}

{{ page.title }} has a converse:

{: .theorem-title }
> Morera's Theorem
>
> Let $G \subset \CC$ be open and let $f : G \to \CC$ be a continuous function.
> If $\int_{\gamma} f(z) \, dz = 0$ for every contour $\gamma$ contained in $G$,
> then $f$ is holomorphic in $G$.