summaryrefslogtreecommitdiffstats
path: root/pages/functional-analysis-basics/inner-product-spaces/index.md
blob: 56e31cf477580a26ae5c17a1cecec1a33adff0d4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
---
title: Inner Product Spaces
parent: Functional Analysis Basics
nav_order: 6
has_children: true
has_toc: false
---

# {{ page.title }}

{% definition Inner Product Space %}
An *inner product* (or *scalar product*) on a real or complex vector space $X$
is a mapping

$$
\innerp{\cdot}{\cdot} : X \times X \to \KK
$$

that is

- linear in its second argument
  
  $$
  \innerp{x}{y+z} = \innerp{x}{y} + \innerp{x}{z} \qquad
  \innerp{x}{\alpha y} = \alpha \innerp{x}{y}
  $$

- conjugate symmetric
  
  $$
  \overline{\innerp{x}{y}} = \innerp{x}{y}
  $$

- nondegenerate

An *inner product space* (or *pre-Hilbert space*) is a pair $(X,\innerp{\cdot}{\cdot})$
consisting of a real or complex vector space $X$
and an inner product $\innerp{\cdot}{\cdot}$ on $X$.
{% enddefinition %}

{% proposition Norm Induced by an Inner Product %}
If $\innerp{\cdot}{\cdot}$ is an inner product
on a real or complex vector space $X$, then

$$
\norm{x} = \sqrt{\innerp{x}{x}} \qquad \forall x \in X
$$

defines a norm on $X$.
{% endproposition %}

In this sense, every inner product space is also a normed space.
As a consequence it is also a metric space and a topological space.

The next theorem shows how the inner product can be recovered from the norm.

{% theorem * Polarization Identity %}
For all vectors $x$ and $y$ of a real inner product space

$$
4 \innerp{x}{y} = \norm{x+y}^2 - \norm{x-y}^2.
$$

For all vectors $x$ and $y$ of a complex inner product space

$$
4 \innerp{x}{y} = \norm{x+y}^2 - \norm{x-y}^2 + i \norm{x-iy}^2 - i \norm{x+iy}^2.
$$
{% endtheorem %}

Note that the complex polarization identity takes the slightly different form

$$
4 \innerp{x}{y} = \norm{x+y}^2 - \norm{x-y}^2 + i \norm{x\mathrel{\color{red}+}iy}^2 - i \norm{x\mathrel{\color{red}-}iy}^2,
$$

if we follow the convention that the inner product is conjugate linear in its second argument.

{% proof %}
In the real case, the inner product is symmetric, and we have

$$
\norm{x \pm y}^2 = \norm{x}^2 \pm 2 \innerp{x}{y} + \norm{y}^2
$$

for all vectors $x$ and $y$.
Taking the difference yields the desired result.

In the complex case, the inner product is conjugate symmetric, and we have

$$
\norm{x \pm y}^2 = \norm{x}^2 \pm 2 \Re \innerp{x}{y} + \norm{y}^2
$$

for all vectors $x$ and $y$. This implies

$$
\begin{aligned}
\norm{x + \phantom{i}y}^2 - \norm{x - \phantom{i}y}^2 &= 4 \Re \innerp{x}{y}, \\
\norm{x - iy}^2 - \norm{x + iy}^2 &= 4 \Im \innerp{x}{y}.
\end{aligned}
$$

The second equation follows from the first by
substituting $y$ with $-iy$ and
using that $\Re \innerp{x}{-iy} = \Re (-i\innerp{x}{y}) = \Im \innerp{x}{y}$.
To obtain the polarization Identity, multiply the second equation with $i$ and then add it to the first.
{% endproof %}

{% theorem * General Polarization Identity %}
Let $X$ be a complex inner product space.
Let $\zeta$ be a $n$-th root of unity with $\zeta \ne 1$ and $\zeta^2 \ne 1$.
Then

$$
\innerp{x}{y} = \frac{1}{n} \sum_{k=0}^{n-1} \zeta^k \norm{x + \zeta^k y}^2 \qquad \forall x,y \in X.
$$
{% endtheorem %}

As a special case, for $\zeta = i$ and $n=4$, we obtain

$$
\innerp{x}{y} = \frac{1}{4} \sum_{k=0}^{3} i^k \norm{x + i^k y}^2.
$$

{% proof %}
TODO
{% endproof %}

For an arbitrary normed space,
the polarization identity does not, in general,
define an inner product.
The following theorem, gives a condition for when it does.

{% theorem * Parallelogram Law %}
Let $X$ be a real or complex normed space.
A norm $\norm{\cdot}$ on $X$ is induced by
an inner product $\innerp{\cdot}{\cdot}$ on $X$,
if and only if $\norm{\cdot}$ satisfies the *parallelogram law*

$$
\norm{x+y}^2 + \norm{x-y}^2 = 2 \norm{x}^2 + 2 \norm{y}^2 \qquad \forall x,y \in X.
$$

In this case, the inner product is uniquely determined by $\norm{\cdot}$
and given by the polarization identity.
{% endtheorem %}

{% theorem * Stewart’s Theorem %}
Let $x$, $y$, $z$ be vectors of an inner product space.
If $x$, $y$ and $z$ are colinear and $y$ lies inbetween $x$ and $y$,
then we have

$$
\norm{p-x}^2 \norm{y-z} + \norm{p-z}^2 \norm{x-y} =
\big\lparen \norm{p-y}^2 + \norm{x-y} \norm{y-z} \big\rparen \norm{x-z}
$$
{% endtheorem %}

---

{% theorem * Cauchy–Schwarz Inequality %}
For all vectors $x$ and $y$ of an inner product space
(with inner product $\innerp{\cdot}{\cdot}$ and induced norm $\norm{\cdot}$)

$$
\abs{\innerp{x}{y}} \le \norm{x} \norm{y},
$$

and equality holds precisely when $x$ and $y$ are linearly dependent.
{% endtheorem %}

Expressed only in terms of the inner product, the Cauchy–Schwarz Inequality reads

$$
\abs{\innerp{x}{y}}^2 \le \innerp{x}{x} \innerp{y}{y}.
$$

{% proof %}
TODO
{% endproof %}

{% corollary Continuity of the Inner Product %}
The inner product is jointly norm continuous.
{% endcorollary %}