summaryrefslogtreecommitdiffstats
path: root/pages/general-topology/metric-spaces/index.md
blob: 52b2b4ca661114f3f088fa36703ae1b18d1045a7 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
---
title: Metric Spaces
parent: General Topology
nav_order: 8
has_children: true
has_toc: false
---

# {{ page.title }}

{% definition Metric, Metric Space %}
A *metric* (or *distance function*) on a set $X$ is
a mapping $d : X \times X \to \RR$ with the properties \
**(M1)** $\ \forall x,y \in X : d(x,y) = 0 \iff x=y \quad$ *(point separation)* \
**(M2)** $\ \forall x,y \in X : d(x,y) = d(y,x) \quad$ *(symmetry)* \
**(M3)** $\ \forall x,y,z \in X : d(x,z) \le d(x,y) + d(y,x) \quad$ *(triangle inequality)* \
We say that $d(x,y)$ is the *distance* between $x$ and $y$. \
A *metric space* is a pair $(X,d)$ consisting of a set $X$
and a metric $d$ on $X$.
{% enddefinition %}

Setting $x=z$ in **(M3)** and applying **(M1)** & **(M2)**
gives us $0 = d(x,x) \le 2 d(x,y)$, hence $d(x,y) \ge 0$.
This *nonnegativity* of the metric is often part of the definition.

Relaxing **(M1)** to the condition $\forall x \in X : d(x,x) = 0$
leads to the notion of a *semi-metric*
and that of a *semi-metric space*.
Nonnegativity still follows as shown above.

*Pseudo-metric* is usually a synonym for *semi-metric*.

*Quasi-metric* refers to dropping **(M2)**.

An *ultrametric* satisfies in place of **(M3)** the stronger condition
$d(x,z) \le \max \braces{d(x,y),d(y,z)}$.

{% definition Metric Subspace %}
A *metric subspace* of a metric space $(X,d)$ is a pair $(S,d_S)$
where $S$ is a subset of $X$ and
$d_S$ is the restriction of $d$ to $S \times S$.
{% enddefinition %}

Clearly, a metric subspace of a metric space is itself a metric space.

{% proposition %}
Let $(X,d)$ be a (semi-)metric space.
- For all $x,y,z \in X$ we have the *inverse triangle inequality*

  $$
  \abs{d(x,y) - d(y,z)} \le d(x,z).
  $$

- For all $v,w,x,y \in X$ we have the *quadrilateral inequality*

  $$
  \abs{d(v,w) - d(x,y)} \le d(v,x) + d(w,y)
  $$
{% endproposition %}

The proofs are straightforward.

TODO
- isometry
- metric induced by a norm
- metric product

{% definition Diameter %}
The *diameter* of a subset $S$ of a metric space $(X,d)$ is the number

$$
\diam{S} = \sup \braces{d(x,y) : x,y \in S} \in \braces{-\infty} \cup [0,\infty].
$$
{% enddefinition %}

Note that $\diam{S} = -\infty$ iff $S = \varnothing$,
and $\diam{S} = 0$ iff $S$ is a singleton set.

{% definition Distance %}
Suppose $(X,d)$ is a metric space.
The *distance* from a point $x \in X$ to a subset $S \subset X$ is

$$
\dist{x,S} = \inf \braces{d(x,y) : y \in S} \in [0,\infty].
$$
{% enddefinition %}

Note that $\dist{x,S} = \infty$ iff $S = \varnothing$.

{% definition Convergence, Limit, Divergence %}
Let $(X,d)$ be a metric space.
A sequence $(x_n)_{n \in \NN}$ in $X$ is said to *converge to a point $x \in X$*, if

$$
\forall \epsilon > 0 \ \ \exists N \in \NN \ \ \forall n \ge N : d(x,x_n) < \epsilon.
$$

In this case, we call $x$ a *limit (point)* of the sequence.
Symbolically this is expressed by

$$
\lim_{n \to \infty} x_n = x
$$

or by saying that $x_n \to x$ as $n \to \infty$.

We call a sequence in $X$ *convergent*
if it converges to some point of $X$
and *divergent* otherwise.
{% enddefinition %}

For a semi-metric space the definition remains the same.
However, the notation $\lim x_n = x$ can be misleading,
because there might be more than one limit point.

{% proposition %}
A sequence in a metric space has at most one limit.
{% endproposition %}

In other words: The limit of a convergent sequence in a metric space is unique.

{% proof %}
Let $(x_n)$ be a convergent sequence in a metric space $(X,d)$ with limit point $x$.
If $x'$ is another limit point of $(x_n)$,
then $d(x,x') \le d(x,x_n) + d(x_n,x')$ for all $n \in \NN$ by **(M3)**.
Given $\epsilon >0$, there exist natural numbers $N$ and $N'$ such that
$d(x,x_n) < \epsilon$ for all $n \ge N$ and
$d(x,x_n) < \epsilon$ for all $n \ge N'$.
Both hold, if $n$ is large enough ($\ge \max \braces{N,N'}$ to be precise).
It follows that $d(x,x') < 2 \epsilon$.
Since $\epsilon$ was arbitrary, $d(x,x') = 0$.
Therefore, $x=x'$ by **(M1)**.
{% endproof %}

{% corollary %}
A semi-metric space $X$ is a metric space if and only if
every sequence in $X$ has at most one limit.
{% endcorollary %}

{% definition %}
Let $(X,d_X)$ and $(Y,d_Y)$ be metric spaces.
A mapping $f: X \to Y$ is called
- *continuous at a point $x \in X$* if

  $$
  \forall\epsilon>0 \ \ \exists\delta>0 \ \ \forall x' \in X :
  \big\lparen d_X(x,x') \le \delta \implies d_Y(f(x),f(x')) < \epsilon \big\rparen
  $$

- *continuous* if it is continuous at every point of $X$, that is

  $$
  \forall x \in X \ \ \forall\epsilon>0 \ \ \exists\delta>0 \ \ \forall x' \in X :
  \big\lparen d_X(x,x') \le \delta \implies d_Y(f(x),f(x')) < \epsilon \big\rparen
  $$

- *uniformly continuous* if

  $$
  \forall\epsilon>0 \ \ \exists\delta>0 \ \ \forall x,x' \in X :
  \big\lparen d_X(x,x') \le \delta \implies d_Y(f(x),f(x')) < \epsilon \big\rparen
  $$

- *Lipschitz continuous* if

  $$
  \exists L \ge 0 \ \ \forall x,x' \in X :
  d_Y(f(x),f(x')) \le L \, d_X(x,x')
  $$
{% enddefinition %}

{% definition Open Ball, Closed Ball, Sphere %}
Suppose $(X,d)$ is a metric space.
The *open ball* with center $c \in X$ and radius $r>0$ is the set

$$
B(c,r) = \braces{x \in X : d(x,c) < r}.
$$

The *closed ball* with center $c \in X$ and radius $r>0$ is the set

$$
\overline{B}(c,r) = \braces{x \in X : d(x,c) \le r}.
$$

The *sphere* with center $c \in X$ and radius $r>0$ is the set

$$
S(c,r) = \braces{x \in X : d(x,c) = r}.
$$
{% enddefinition %}

Observe that $S(c,r) = \overline{B}(c,r) \setminus B(c,r)$.

{% definition Open Subset of a Metric Space %}
A subset $O$ of a metric space is called *open* if for every point $x \in O$
there exists an $\epsilon > 0$ such that $B(x,\epsilon) \subset O$.
{% enddefinition %}

{% proposition Metric Topology %}
Let $(X,d)$ be a metric space.
The collection of open subsets of $X$ forms a topology on $X$.
This topology is called the *metric topology* on $X$ induced by $d$.
{% endproposition %}

{% proposition %}
- Open balls in a metric space are open with respect to the metric topology.
- Closed balls in a metric space are closed with respect to the metric topology.
- The boundary (with respect to the metric topology) of an open or closed ball
  is the sphere with the same center and radius. Not true!!!!
- The collection of open balls in a metric space forms a basis of the metric topology.
{% endproposition %}

## Complete Metric Spaces

- Definition
- Banach Fixed-Point Theorem
- Baire
- Metric Completion