1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146


title: Topological Spaces
parent: General Topology
nav_order: 1

# {{ page.title }}
## Elementary Concepts
{% definition Topology, Topological Space %}
A *topology* on a set $X$ is a collection $\mathcal{T}$ of subsets of $X$ such that \
**(T1)** $\varnothing$ and $X$ belong to $\mathcal{T}$, \
**(T2)** the union of any subcollection of $\mathcal{T}$ belongs to $\mathcal{T}$, \
**(T3)** the intersection of any finite subcollection $\mathcal{T}$ belongs to $\mathcal{T}$. \
A *topological space* is a pair $(X,\mathcal{T})$ consisting of
a set $X$ and a topology $\mathcal{T}$ on $X$.
{% enddefinition %}
If one follows the convention that
the union of the empty collection of subsets of $X$ is the empty subset of $X$,
and its intersection is all of $X$,
then **(T1)** is a consequence of **(T2)**, **(T3)**
and can be omitted.
If $(X,\mathcal{T})$ is a topological space,
the elements of $X$ are called *points*
and the elements of $\mathcal{T}$ are called the *open sets*.
{% example %}
On every set $X$ we have
the *trivial* (or *indiscrete*) *topology* $\braces{\varnothing,X}$ and
the *discrete topology* $\mathcal{P}(X)$.
These collections are in fact topologies on $X$.
{% endexample %}
{% example %}
If $X$ is any set,
then the collection of all subsets of $X$
whose complement is either finite or all of $X$
is a topology on $X$;
it is called the *finite complement topology*.
The *countable complement topology* is defined analogously.
{% endexample %}
{% definition Comparison of Topologies %}
Suppose $\mathcal{T}$ and $\mathcal{T}'$ are topologies on a set $X$.
When $\mathcal{T} \subset \mathcal{T}'$,
we say that $\mathcal{T}$ is *coarser* or *smaller* or *weaker* than $\mathcal{T}'$,
and that $\mathcal{T}'$ is *finer* or *larger* or *stronger* than $\mathcal{T}$.
If the inclusion is proper, then we say *strictly coarser* and so on.
If either $\mathcal{T} \subset \mathcal{T}'$ or $\mathcal{T} \supset \mathcal{T}'$ holds,
then the topologies are said to be *comparable*.
{% enddefinition %}
{% proposition Intersection of Topologies %}
If $\braces{\mathcal{T}_{\alpha}}$ is a family of topologies on a set $X$,
then $\bigcap_{\alpha} \mathcal{T}_{\alpha}$ is a topology on $X$.
{% endproposition %}
{% definition Generated Topology %}
Suppose $\mathcal{A}$ is a collection of subsets of a set $X$.
The *topology generated by $\mathcal{A}$* is
the intersection of all topologies on $X$ containing $\mathcal{A}$.
{% enddefinition %}
By the previous proposition, the generated topology is indeed a topology.
{% proposition %}
The topology generated by a collection $\mathcal{A}$ of subsets of a set $X$
is the smallest topology on $X$ containing $\mathcal{A}$.
{% endproposition %}
## Bases and Subbases
{% definition Basis for a Topology %}
A *basis for a topology* on a set $X$ is a collection $\mathcal{B}$ of subsets of $X$
such that for every point $x \in X$
 there exists $B \in \mathcal{B}$ such that $x \in B$,
 if $x \in B_1 \cap B_2$ for $B_1, B_2 \in \mathcal{B}$,
then there exists a $B_3 \in \mathcal{B}$
such that $x \in B_3 \subset B_1 \cap B_2$.
{% enddefinition %}
{% theorem Topology Generated by a Basis %}
If $X$ is set and $\mathcal{B}$ is a basis for a topology on $X$,
then the topology generated by $\mathcal{B}$ equals
 the collection of all subsets $S \subset X$ with the property
that for every $x \in S$ there exists a basis element $B \in \mathcal{B}$
such that $x \in B$ and $B \subset S$;
 the collection of all arbitrary unions of elements of $\mathcal{B}$.
{% endtheorem %}
Let $\mathcal{T}$ be a topology on a set $X$.
As one might expect,
a collection $\mathcal{B}$ of subsets of $X$
is said to be a *basis for the topology $\mathcal{T}$*,
if $\mathcal{B}$ is basis for a topology on $X$ and
the topology generated by $\mathcal{B}$ equals $\mathcal{T}$.
{% example %}
If $X$ is a set, then the collection of singletons $\braces{x}$, $x \in X$,
is a basis for the discrete topology on $X$.
{% endexample %}
{% example %}
If $(X,d)$ is a metric space,
then the collection of open balls is a basis for the metric topology on $X$.
{% endexample %}
{% definition Subbasis for a Topology %}
A *subbasis for a topology* on a set $X$ is a collection $\mathcal{S}$ of subsets of $X$
such that for every point $x \in X$ there exists a $S \in \mathcal{S}$ such that $x \in S$.
{% enddefinition %}
{% theorem Topology Generated by a Subbasis %}
If $X$ is set and $\mathcal{S}$ is a subbasis for a topology on $X$,
then the topology generated by $\mathcal{S}$ equals
 the collection of all arbitrary unions of finite intersections of elements of $\mathcal{S}$.
{% endtheorem %}
## Open and Closed Sets
{% definition Open Set, Closed Set %}
Suppose $(X,\mathcal{T})$ is a topological space.
A subset $S$ of $X$
is called *open* with respect to $\mathcal{T}$
when it belongs to $\mathcal{T}$,
and it is called *closed* with respect to $\mathcal{T}$
when its complement $X \setminus S$ belongs to $\mathcal{T}$.
{% enddefinition %}
A subset of a topological space is open
if and only if its complement is closed.
{% proposition %}
Let $\mathcal{C}$ be the collection of closed subsets of a topological space. Then
{: .mb0 }
 $X$ and $\varnothing$ belong to $\mathcal{C}$,
 the intersection of any subcollection of $\mathcal{C}$ belongs to $\mathcal{C}$,
 the union of any finite subcollection $\mathcal{C}$ belongs to $\mathcal{C}$.
{% endproposition %}
## The Subspace Topology
