summaryrefslogtreecommitdiffstats
path: root/pages/operator-algebras/banach-algebras/index.md
blob: 2fb8f038a34533b66de683e76ea0c0af35f8b33b (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
---
title: Banach Algebras
parent: Operator Algebras
nav_order: 1
has_children: true
has_toc: false
---

# {{ page.title }}

{% definition Banach Algebra %}
A *Banach algebra* $\mathcal{A}$ is a complex Banach space
endowed with a binary operation $(x,y) \mapsto xy$, called *product*,
that makes the underlying vector space into an associative algebra,
and that satisfies

$$
\norm{xy} \le \norm{x} \norm{y} \quad \forall x,y \in \mathcal{A}.
$$
{% enddefinition %}

The algebraic properties required of the product are explicitly:

$$
\begin{align*}
x(y+y') &= xy + xy' &\quad
(\lambda x)y &= \lambda (xy) &\quad
(xy)z &= x(yz) \\
(x+x')y &= xy + x'y &
x(\lambda y) &= \lambda (xy)
\end{align*}
$$

The topological property is sometimes described by saying
that the norm is *submultiplicative*.

{% definition Commutative Banach Algebra %}
A Banach algebra $\mathcal{A}$ is said to be *commutative* (or *abelian*) if
$xy = yx$ holds for all $x,y \in \mathcal{A}$.
{% enddefinition %}

{% definition Unital Banach Algebra %}
An element $e$ of a Banach algebra $\mathcal{A}$ is called a *unit* (or an *identity*),
if $\norm{e} = 1$ and $ex=x=xe$ for all $x \in \mathcal{A}$.
We say that $\mathcal{A}$ is an *unital* Banach algebra, if $\mathcal{A}$ contains a unit.
{% enddefinition %}

It is easy to see that a Banach algebra has at most one unit.

{: .proposition-title #neumann-series }
> Proposition (Neumann Series)
>
> Let $\mathcal{A}$ be a unital Banach algebra
> and let $x \in \mathcal{A}$ satisfy $\norm{x} < 1$.
> Then $\mathbf{1}-x$ is invertible
> and the inverse is given by the series
> 
> $$
> (\mathbf{1}-x)^{-1} = \sum_{n=0}^{\infty} x^n,
> $$
>
> which converges absolutely in norm.
> Moreover, we have the estimate
> 
> $$
> \norm{(\mathbf{1}-x)^{-1}} \le \frac{1}{1 - \norm{x}}.
> $$
> {: .katex-display .mb-0 }

{% proof %}
Since the Banach algebra norm is submultiplicative,
we have $\norm{x^n} \le \norm{x}^n$ for all $n \in \NN$.
This implies that the series $\sum \norm{x^n}$
is majorized by the geometric series $\sum \norm{x}^n$,
which is known to be convergent for $\norm{x} < 1$.
It follows that the series $\sum x^n$ is absolutely convergent.
Denote its limit by $s = \lim_{n \to \infty} s_n = \sum_{n=0}^{\infty} x$,
where $s_n = \mathbf{1} + x + \cdots + x^n$ is the $n$th partial sum.
Clearly,

$$
(\mathbf{1}-x) s_n = s_n (\mathbf{1}-x) = \mathbf{1} - x^{n+1}.
$$

In the limit $n \to \infty$ we obtain $(\mathbf{1}-x) s = s (\mathbf{1}-x) = \mathbf{1}$, 
because multiplication in a Banach algebra is continuous, and because $y^n \to 0$ when $\norm{y} < 1$.
This proves that $s$ is the inverse of $\mathbf{1}-x$.

The estimate follows from $\norm{s} \le \sum \norm{x}^n = 1 / (1 - \norm{x})$.
{% endproof %}

## The Spectrum

{: .definition-title }
> Definition (Spectrum, Resolvent Set)
>
> Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$.
> {: .mb-0 }
> 
> {: .my-0 }
> - The *spectrum* of $x$ is the set $\sigma(x) = \lbrace\lambda \in \CC : x - \lambda$ is not invertible in $\mathcal{A}\rbrace$. \
>   The elements of $\sigma(x)$ are called *spectral values* of $x$.
> - The *resolvent set* of $x$ is the set $\rho (x) = \CC \setminus \sigma(x)$. \
>   For $\lambda \in \rho(x)$ the *resolvent* of $x$ is the algebra element $R_{\lambda} = (\lambda - x)^{-1}$. \
>   The mapping $R : \rho(x) \to \mathcal{A}$, $\lambda \mapsto R_{\lambda}$, is called *resolvent map*.

{% theorem %}
Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$.
If $\lambda$ lies in the resolvent set of $x$,
then so do all complex numbers $\mu$ with the property that

$$
\abs{\lambda - \mu} < \frac{1}{\norm{(\lambda - x)^{-1}}}. \tag{$*$}
$$

For such $\mu$ the resolvent of $x$ is represented by the absolutely convergent power series

$$
(\mu - x)^{-1} = \sum_{n=0}^{\infty} (\mu - \lambda)^n (\lambda - x)^{-(n+1)}.
$$
{% endtheorem %}

{% proof %}
Let $\lambda$ be in the resolvent set of $x$.
Then $\lambda - x$ is invertible and we have for all $\mu \in \CC$ 

$$
\mu - x = \bigl(\mathbf{1} - (\lambda - \mu) (\lambda - x)^{-1}\bigr) (\lambda - x).
$$

If $\mu$ satisfies condition ($*$), the first factor is invertible
and the inverse is given by a [Neumann series](#neumann-series):

$$
\bigl(\mathbf{1} - (\lambda - \mu) (\lambda - x)^{-1}\bigr)^{-1}
= \sum_{n=0}^{\infty} (\lambda - \mu)^n (\lambda - x)^{-n}.
$$

As a product of invertible algebra elements, $\mu - x$ must itself be invertible;
the claimed formula for its inverse follows by an application of
the rule $(ab)^{-1} = b^{-1} a^{-1}$ for invertible $a,b \in \mathcal{A}$.
{% endproof %}

{: .corollary #resolvent-set-is-open #spectrum-is-closed }
> The resolvent set $\rho(x)$ is open and the spectrum $\sigma(x)$ is closed.

{: .corollary #resolvent-map-is-analytic }
> Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$.
> The resolvent map
>
> $$
> R : \rho(x) \longrightarrow \mathcal{A}, \quad \lambda \longmapsto R_{\lambda} = (\lambda - x)^{-1},
> $$
>
> is (strongly) analytic.

 ---

{: .proposition #spectrum-is-not-empty }
> Suppose $x$ is an element of a unital Banach algebra.
> Then its spectrum $\sigma(x)$ is not empty.

{% proof %}
We assume that $\sigma(x)$ is empty
and derive a contradiction.
Observe that the resolvent map $R$ is defined on the whole complex plane.
By [this corollary](#resolvent-map-is-analytic), $R$ is analytic, hence entire.
Analytic functions are countinuous;
therefore $R$ is bounded on the compact disk $\abs{\lambda} \le 2 \norm{x}$.
For $\abs{\lambda} > 2 \norm{x}$ we may expand $R_{\lambda}$ into a [Neumann series](#neumann-series),

$$
R_{\lambda}
= (\lambda - x)^{-1}
= \lambda^{-1} (\mathbf{1} - \lambda^{-1} x)^{-1} 
= \lambda^{-1} \sum_{n=0}^{\infty} (\lambda^{-1} x)^n,
$$

and make the estimate

$$
\norm{R_{\lambda}}
\le \abs{\lambda}^{-1} (1 - \norm{\lambda^{-1} x})^{-1} 
= (\abs{\lambda} - \norm{x})^{-1}
< \norm{x}^{-1}.
$$

This shows that $R$ is a bounded entire function. Now
[Liouville's Theorem](/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.html#liouvilles-theorem)
(for vector-valued functions) implies that $R$ is constant.
This is contradictiory because XXX
{% endproof %}

{: .theorem-title }
> Gelfand–Mazur Theorem
>
> Every Banach algebra in which all nonzero elements are invertible is isometrically isomorphic to $\CC$.

{% proof %}
For any Banach algebra $A$,
the mapping $\varphi : \CC \to A$, $\lambda \mapsto \lambda \mathbf{1}$,
is linear, multiplicative and isometric, hence injective.
Let $x$ be any element of $A$.
Since its 
[spectrum is not empty](/pages/operator-algebras/banach-algebras/index.html#spectrum-is-not-empty),
there must exist a complex number $\lambda$
such that $x - \lambda \mathbf{1}$ is not invertible.
Now suppose that all nonzero elements of $A$ are invertible.
Then necessarily $x - \lambda \mathbf{1} = 0$, or $x = \lambda \mathbf{1}$.
This proves that the mapping $\varphi$ is also surjective
and thus an isometric isomorphism.
{% endproof %}

Other ways of stating that
all nonzero elements of a Banach algebra $\mathcal{A}$ are invertible
include:
{: .mb-0 }

{: .mt-0 }
- $\mathcal{A}$ is a division algebra.
- The underlying ring of $\mathcal{A}$ is a field.

{: .theorem-title }
> Spectral Radius Formula
>
> For every Banach algebra element $x$ the spectral radius is given by
> 
> $$
> r(x) = \lim_{n \to \infty} \norm{x^n}^{1/n}.
> $$
> {: .katex-display .mb-0 }

## Gelfand’s Theory

Proposition
Let $\mathcal{A}$ be a unital commutative Banach algebra.
If $\phi$ is a nonzero multiplicative linear functional on $\mathcal{A}$,
then its kernel $\ker \phi$ is a maximal ideal in $\mathcal{A}$.
Every maximal ideal $\mathcal{I}$ in $\mathcal{A}$ is of the form
$I = \ker \phi$ for some nonzero multiplicative linear functional $\phi$ on $\mathcal{A}$.

In other words, the mapping $\phi \mapsto \ker \phi$ is gives a bijection
between the sets of nonzero multiplicative linear functionals and maximal ideals.


Definition
The *maximal ideal space* $\mathcal{M}_{\mathcal{A}}$ of a unital commutative Banach algebra $\mathcal{A}$
is the set of maximal ideals of $\mathcal{A}$; its topology is inherited from
the weak* topology on the dual of $\mathcal{A}$ via the correspondece described above.

Proposition
The *maximal ideal space* of a unital commutative Banach algebra is a compact Hausdorff space.

{% definition bla, blubb %}
a
b
{% enddefinition %}