summaryrefslogtreecommitdiffstats
path: root/much.tex
diff options
context:
space:
mode:
Diffstat (limited to 'much.tex')
-rw-r--r--much.tex546
1 files changed, 494 insertions, 52 deletions
diff --git a/much.tex b/much.tex
index 58aeab3..a7f9bbf 100644
--- a/much.tex
+++ b/much.tex
@@ -1,23 +1,22 @@
-\chapter{A quantum energy inequality involving local modular data}
-
+\chapter{A Quantum Energy Inequality Involving Local Modular Data}
\cite{Much2022}
\begin{equation*}
\innerp{\psi}{\energydensity(f)\psi} \ge
- - \epsilon - \norm{\smash[b]{\Delta}_{\smash[t]{\sharp}}^{-1/2} \ft{g}_{\lambda}(K_{\raisebox{5pt}{\footnotesize$\sharp$}}) \energydensity(f) \fockvaccum}
+ - \epsilon - \norm{\smash[b]{\Delta}_{\smash[t]{\sharp}}^{-1/2} \ft{g}_{\lambda}(K_{\raisebox{5pt}{\footnotesize$\sharp$}}) \energydensity(f) \FockVacuum}
\end{equation*}
-
\section{Misc}
-\todo{Put this somwhere else.}
+\todo{Put this somewhere else.}
A \emph{Lorentz transform} is a linear automorphism of Minkowski spacetime
which preserves the Lorentz bilinear form.
Lorentz transforms are usually represented by (real) $4 \times 4$ matrices,
with respect to the standard basis.
-the \emph{Lorentz group} $\FullLorentzGroup$.
+
+The \emph{Lorentz group} $\FullLorentzGroup$.
\begin{equation*}
\FullPoincareGroup = \RR^4 \ltimes \FullLorentzGroup
\end{equation*}
@@ -44,7 +43,7 @@ Poincaré covariance
\begin{definition}{Von Neumann Algebra of Local Observables}{}
\begin{equation*}
- \localalg{\spacetimeregion{O}} = \braces{b(\varphi(f)) \mid b, f \in \realschwartz{M}, \supp f \subset \spacetimeregion{O}}''
+ \localalg{\spacetimeregion{O}} = \braces{b(\varphi(f)) \mid \text{$b$ bounded}, f \in \realschwartz{M}, \supp f \subset \spacetimeregion{O}}''
\end{equation*}
\end{definition}
@@ -52,10 +51,10 @@ Poincaré covariance
\index{modular!theory}
If $\hilb{H}$ is a Hilbert space
-we shall denote the $C^*$-algebra of all bounded linear operators on $\hilb{H}$ by $B(\hilb{H})$.
+we shall denote the $C^*$-algebra of all bounded linear operators on $\hilb{H}$ by $\BoundedLinearOperators{\hilb{H}}$.
\begin{definition}{Cyclic and Separating Vectors}{}
- Suppose $\hilb{H}$ is a Hilbert space and $\mathcal{A}$ is a $C^*$-subalgebra of $B(\hilb{H})$.
+ Suppose $\hilb{H}$ is a Hilbert space and $\mathcal{A}$ is a $C^*$-subalgebra of $\BoundedLinearOperators{\hilb{H}}$.
A vector $\Omega \in \hilb{H}$ is called
\begin{itemize}
\item \emph{cyclic}\index{cyclic vector} for $\mathcal{A}$ if the vector set $\mathcal{A} \Omega$ is dense in $\hilb{H}$.
@@ -66,19 +65,37 @@ Occasionally, a vector that is both cyclic and separating is called \emph{standa
Recall that the commutant of a set $\mathcal{S} \subset B(\hilb{H})$ of operators
is defined as the set of all operators $T \in B(\hilb{H})$ which commute with all operators $S$ in $\mathcal{S}$.
-We shall denote the commutant of $\mathcal{S}$ by $\mathcal{S}'$.\nomenclature{$\mathcal{A}'$}{commutant of $\mathcal{A}$}
+We shall denote the commutant of $\mathcal{S}$ by $\mathcal{S}'$.\nomenclature[A]{$\mathcal{A}'$}{commutant of $\mathcal{A}$}
\begin{proposition}{}{cyclic-separating}
- \begin{enumerate}[label=(\roman*),nosep,leftmargin=*,widest=ii]
- \item A vector is cyclic for $\mathcal{A}$ if and only if it is separating for $\mathcal{A}'$.
- \item If $\vNa{M}$ is a von Neumann algebra, then a vector is cyclic and separating for $\vNa{M}$
- if and only if it is cyclic and separating for $\vNa{M}'$.
+ Let $\hilb{H}$ be a Hilbert space and $\mathcal{A}$ be a $C^*$-subalgebra of $\BoundedLinearOperators{\hilb{H}}$.
+ \begin{enumerate}
+ \item \label{item:first} A vector is cyclic for $\mathcal{A}$ if and only if it is separating for $\mathcal{A}'$.
+ \item \label{item:second} If $\mathcal{A}$ is a von Neumann algebra, then a vector is cyclic and separating for $\mathcal{A}$
+ if and only if it is cyclic and separating for $\mathcal{A}'$.
\end{enumerate}
\end{proposition}
\begin{proof}
- \todo{xxx}
- The second assertion directly follows from the first and the fact that $\vNa{M}'' = \vNa{M}$.
+ First, suppose that $\Omega \in \hilb{H}$ is cyclic for $\mathcal{A}$.
+ If $A'$ is an element of $\mathcal{A}'$ with $A' \Omega = 0$,
+ then $A' A \Omega = A A' \Omega = 0$ for all $A \in \mathcal{A}$.
+ This means that $A'$ vanishes on the dense subspace $\mathcal{A} \Omega$,
+ and thus on all of $\hilb{H}$, i.e.\ $A'=0$.
+ This proves that $\Omega$ is separating for $\mathcal{A}'$.
+
+ Conversely, suppose that $\Omega$ is separating for $\mathcal{A}'$.
+ We have to show that the closed subspace $\overline{\mathcal{A}\Omega}$ is all of $\hilb{H}$.
+ Let $P$ be the orthogonal projection onto $\overline{\mathcal{A}\Omega}$.
+ Clearly, any element $A$ of $\mathcal{A}$ maps $\overline{\mathcal{A}\Omega}$ into itself.
+ Thus, $PAP=AP$, and the same holds for $A^*$, that is, $PA^*P=A^*P$.
+ Taking the adjoint of the second equation, we get $PAP=PA$. Hence, $P \in \mathcal{A}'$.
+ Now, $P \Omega = \Omega = I \Omega$, where $I$ is the identity operator on $\hilb{H}$ which obviously also belongs to $\mathcal{A}'$,
+ and the assumption that $\Omega$ is separating for $\mathcal{A'}$ implies $P=I$.
+ Consequently, $\overline{\mathcal{A} \Omega} = \hilb{H}$.
+
+ Statement~\ref{item:second} directly follows from~\ref{item:first} and
+ the fact that $\mathcal{A}'' = \mathcal{A}$ by the Double Commutant Theorem.
\end{proof}
If $\Omega$ is separating for $\mathcal{A}$,
@@ -87,7 +104,7 @@ with a unique $A \in \mathcal{A}$.
This allows us to define an (anti-linear) operator $S_0$ in $\hilb{H}$ with domain $\mathcal{A}\Omega$ by
\begin{equation}
\label{equation:definition-s0}
- \quad S_0 A\Omega \defequal S_0 A^*\Omega \qquad A \in \mathcal{A}.
+ \quad S_0 A\Omega \defequal A^*\Omega \qquad A \in \mathcal{A}.
\end{equation}
The operator $S_0$ is densely defined if and only if $\Omega$ is cyclic for $\mathcal{A}$.
Since the $*$-operation on $\mathcal{A}$ is involutive,
@@ -100,12 +117,12 @@ the range of $S_0$ coincides with its domain.
\begin{proof}
By \cref{proposition:cyclic-separating},
$\Omega$ is also cyclic and separating for the commutant $\vNa{A}'$.
- Hence we may, analogously to $S_0$,
+ Hence we may, in analogy to $S_0$,
define another anti-linear operator $F_0$ in $\hilb{H}$ with dense domain $\mathcal{A}' \Omega$ by
\begin{equation*}
- \quad F_0 B\Omega \defequal F_0 B^*\Omega \qquad B \in \mathcal{A'}.
+ \quad F_0 B\Omega \defequal B^*\Omega \qquad B \in \mathcal{A'}.
\end{equation*}
- By definition of $S_0$ and $F_0$ we have for every $A \in \mathcal{A}$ and $B \in \mathcal{A}'$
+ By definitions of $S_0$ and $F_0$, we have for every $A \in \mathcal{A}$ and $B \in \mathcal{A}'$
\begin{equation*}
\innerp{S_0 A \Omega}{B \Omega} =
\innerp{\Omega}{AB \Omega} =
@@ -124,10 +141,10 @@ the range of $S_0$ coincides with its domain.
Suppose $\Omega$ is a cyclic and separating vector for a von Neumann algebra $\mathcal{A}$.
The closure $S = \operatorclosure{S_0}$
of the operator $S_0$ defined on $\mathcal{A}\Omega$ by
- $S_0 A\Omega = S_0 A^*\Omega$
+ $S_0 A\Omega = A^*\Omega$
for $A \in \mathcal{A}$
is called the
- \emph{Tomita operator}\index{Tomita operator}\index{operator!Tomita}\nomenclature{$S$}{Tomita operator}
+ \emph{Tomita operator}\index{Tomita operator}\index{operator!Tomita}\nomenclature[S]{$S$}{Tomita operator}
for the pair $(\mathcal{A},\Omega)$.
\end{definition}
@@ -135,7 +152,7 @@ It is a well-known fact that closed operators can be decomposed
in a similar fashion to the polar coordinate representation $z = e^{i\arg z} \abs{z}$
of a complex number.
We state the theorem in its somewhat uncommon variant for anti-linear operators,
-as this is our only use case.
+as this will be our only use case.
\begin{theorem}{Polar Decomposition for Anti-Linear Closed Operators}{polar-decomposition}
\index{polar decomposition}
@@ -156,7 +173,7 @@ as this is our only use case.
\end{theorem}
Proofs of this statement are contained in~\cite{ReedSimon1} and~\cite{Schmüdgen2012}.
-When we speak of \emph{the} polar composition we tacitly assume that the additional conditions
+When we speak of \emph{the} polar composition of an operator we tacitly assume that the additional conditions
ensuring uniqueness are satisfied.
Now we are able to introduce the fundamental objects of modular theory.
@@ -170,7 +187,7 @@ Now we are able to introduce the fundamental objects of modular theory.
\end{equation*}
be its polar decomposition.
The anti-unitary operator $J$ is called
- \emph{modular conjugation}\index{modular!conjugation}\nomenclature{$J$}{modular conjugation}.
+ \emph{modular conjugation}\index{modular!conjugation}\nomenclature[J]{$J$}{modular conjugation}.
The positive selfadjoint operator $\Delta$ is called
\emph{modular operator}\index{modular!operator}\index{operator!modular}\nomenclature{$\Delta$}{modular operator}.
The pair $(J,\Delta)$ is said to be the \emph{modular data}\index{modular!data}\index{modular!objects} associated to
@@ -187,8 +204,6 @@ Now we are able to introduce the fundamental objects of modular theory.
The modular group is a strongly continuous one-parameter unitary group on $\hilb{H}$.
-\newpage
-
\begin{proposition}{}{modular-data-unitary}
Suppose $\vNa{M}$ is a von Neumann algebra acting on a Hilbert space $\hilb{H}$.
Let $U$ be a unitary operator on $\hilb{H}$.
@@ -202,11 +217,11 @@ The modular group is a strongly continuous one-parameter unitary group on $\hilb
\begin{proof}
To prove the first assertion,
consider any $A \in (U\vNa{M}U^*)''$.
- By the double commutant theorem,
+ By the Double Commutant Theorem~\cite[Theorem 18.6]{Zhu1993},
it suffices to show that $A \in U\vNa{M}U^*$.
As $\vNa{M}$ is a von Neumann algebra,
this is equivalent to $U^*\! AU \in \vNa{M}''$,
- again by the double commutant theorem.
+ again by the Double Commutant Theorem.
Let $B \in \vNa{M}'$.
It is easy to check that $UBU^* \in (U\vNa{M}U^*)'$.
By assumption, $A$ lies in the commutant of $(U\vNa{M}U^*)'$.
@@ -221,15 +236,15 @@ The modular group is a strongly continuous one-parameter unitary group on $\hilb
Now $A=0$ follows from the assumption that $\Omega$ is separating for $\vNa{M}$.
We have shown that the mapping $UAU^*U\Omega = UA\Omega$ from $U\vNa{M}U^* \to \hilb{H}$ is injective.
- Let $S = \overline{S_0}$ be the Tomita operator associated to $(\vNa{M},\Omega)$,
- and let $S' = \overline{S'_0}$ be the Tomita operator associated to $(U\vNa{M}U^*,U\Omega)$.
+ Let $S = \operatorclosure{S_0}$ be the Tomita operator associated to $(\vNa{M},\Omega)$,
+ and let $S' = \operatorclosure{S'_0}$ be the Tomita operator associated to $(U\vNa{M}U^*,U\Omega)$.
Then we have
\begin{equation*}
(S'_0 U) A \Omega =
S'_0 (U A U^*) U \Omega =
(U A^* U^*) U \Omega =
U A^* \Omega =
- U S_0 A \Omega
+ (U S_0) A \Omega
\end{equation*}
for all $A \in \vNa{M}$. Consequently, $S'_0 = U S_0 U^*$ as operators with domain $U\vNa{M}\Omega$.
Taking the closure, we obtain $S' = U S U^*$.
@@ -243,12 +258,12 @@ The modular group is a strongly continuous one-parameter unitary group on $\hilb
associated to the pair $(U\vNa{M}U^*,U\Omega)$.
\end{proof}
-\newpage
-
Finally, let us outline how modular theory enters into algebraic quantum field theory.
-\begin{theorem}{Reeh-Schlieder Theorem}{reeh-schlieder}
- \todo{spell it out}
+\begin{theorem}{Reeh--Schlieder Theorem}{reeh-schlieder}
+ Let $\spacetimeregion{O}$ be any open spacetime region.
+ Then the vacuum vector $\Omega$ is cyclic for $\localalg{\spacetimeregion{O}}$.
+ If $\spacetimeregion{O}'$ is non-empty, then $\Omega$ is also separating for $\localalg{\spacetimeregion{O}}$.
\end{theorem}
By Reeh-Schlieder (\cref{theorem:reeh-schlieder}), the vacuum $\Omega$ is cyclic and separating for $\localalg{\spacetimeregion{O}}$.
@@ -286,7 +301,7 @@ since they are transformed into each other by space inversion.
\end{proof}
In the standard representation of the Lorentz group, the boost (or velocity transformation) along the $x^1$-axis
-with rapidity $2 \pi t$ is given by the matrix\footnote{
+with rapidity $2 \pi t$ is given by the matrix\footnote{%
This matrix depends on the choice of metric signature.
Ours is $(+,-,-,-)$.
For $(-,+,+,+)$, use
@@ -300,21 +315,22 @@ with rapidity $2 \pi t$ is given by the matrix\footnote{
\end{equation*}
}
-\begin{equation*}
+\begin{equation}
+ \label{equation:lorentz-boost}
\Lambda(t) = \begin{pmatrix}
\cosh(2 \pi @ t) & \sinh(2 \pi @ t) & \; 0 \; & \; 0 \; \\
\sinh(2 \pi @ t) & \cosh(2 \pi @ t) & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
\end{pmatrix}
-\end{equation*}
+\end{equation}
The following proposition shows that $t \mapsto \Lambda(t)$ is
a one-parameter subgroup of the stabilizer group of the right wedge
with respect to the action of the Lorentz group on subsets of Minkowski space.
\begin{proposition}{}{}
- \begin{enumerate}[label=(\roman*),nosep,leftmargin=*,widest=ii]
+ \begin{enumerate}
\item $\Lambda(s + t) = \Lambda(s) \Lambda(t)$ for all $s,t \in \RR$.
\item $\Lambda(t) \rightwedge = \rightwedge$ for all $t \in \RR$.
\end{enumerate}
@@ -349,7 +365,9 @@ with respect to the action of the Lorentz group on subsets of Minkowski space.
and~\eqref{equation:image-right-wedge}. Now it follows from $\Lambda(-t) = \Lambda(t)^{-1}$ that in fact $\Lambda(t) x = y$.
\end{proof}
-\begin{theorem}{Bisognano-Wichmann Theorem \textmd{\cite{Bisognano1975}}}{}
+It can easily be seen that $\rightwedge' = \leftwedge$, and so \cref{theorem:reeh-schlieder} applies.
+
+\begin{theorem}{Bisognano--Wichmann Theorem \textmd{\cite{Bisognano1975}}}{bisognano-wichmann}
For the theory of a free scalar field in Minkowski spacetime,
let $\spacetimeregion{O} \mapsto \localalg{\spacetimeregion{O}}$ be the net of von Neumann algebras of local observables.
If $(J,\Delta)$ is the modular data associated to the algebra $\localalg{\rightwedge}$ of the right wedge and the vacuum $\Omega$, then
@@ -400,7 +418,7 @@ That this is generally true is the statement of the following Lemma.
for all Borel functions $f : \RR \to \CC$.
\end{lemma}
-\question{Ist diese Aussage korrekt? Ist mein Beweis richtig? Geht der auch einfacher?}
+\todo{write down the simpler proof}
\begin{proof}
For each regular value $\lambda \in \rho(A)$ let
@@ -453,14 +471,14 @@ That this is generally true is the statement of the following Lemma.
\end{equation*}
-Recall that Stones Theorem \todo{add reference} states that
+Recall that Stone's Theorem \todo{add reference} states that
every strongly continuous one-parameter unitary group
is of the form $t \mapsto e^{itK}$ with a uniquely determined
selfadjoint operator $K$, which is called \emph{infinitesimal generator} of the group.
\begin{definition}{Modular Hamiltonian}{}
The infinitesimal generator of the modular group associated to a spacetime region $\spacetimeregion{O}$ is called the
- \emph{modular Hamiltonian}\index{modular!Hamiltonian}\nomenclature{$K_{\spacetimeregion{O}}$}{modular Hamiltonian for $\spacetimeregion{O}$}
+ \emph{modular Hamiltonian}\index{modular!Hamiltonian}\nomenclature[KO]{$K_{\spacetimeregion{O}}$}{modular Hamiltonian for $\spacetimeregion{O}$}
for said region, and denoted $K_{\spacetimeregion{O}}$.
\end{definition}
@@ -472,29 +490,453 @@ In other words, $K_{\spacetimeregion{O}}$ is the unique selfadjoint operator suc
A\psi(p) = - \frac{2\pi}{i} \parens[\big]{\partial_0 \psi(p) \, p^1 + \partial_1 \psi(p) \, p^0}
\end{equation*}
\end{proposition}
+\todo{domain, proof}
\section{Complex Lorentz Transformations}
+The main result of this section is \cref{proposition:main-result}.
+
+By definition, the \emph{complex Lorentz group}\index{Lorentz group!complex}\nomenclature[LC]{$\ComplexLorentzGroup$}{complex Lorentz group} $\ComplexLorentzGroup$ is the isometry group
+of complex Minkowski space $M+iM \cong \CC^4$ with respect to the inner product
+\begin{equation*}
+ \innerp{z_1}{z_2} = \innerp{x_1}{x_2} - \innerp{y_1}{y_2} + i \parens[\big]{\innerp{x_1}{y_2} + \innerp{x_2}{y_1}}.
+\end{equation*}
+The \emph{complex Poincaré group}\index{Poincaré group!complex}\nomenclature[PC]{$\ComplexPoincareGroup$}{complex Poincaré group} is the semidirect product $\ComplexPoincareGroup \defequal \CC^4 \ltimes \ComplexLorentzGroup$.
+The action of $\ComplexPoincareGroup$ on $M+iM$ is defined in the obvious way.
+The complex Poincaré group has just two connected components, the subgroup $\ProperComplexPoincareGroup$ and the subset $\ImproperComplexPoincareTransformations$,
+differentiated by the sign of $\det \Lambda \in \braces{\pm 1}$ for its elements $(z,\Lambda)$.
+The (real) proper orthochronous Poincaré group $\ProperOrthochronousPoincareGroup$ is a subgroup of $\ProperComplexPoincareGroup$.
+Each of the two following sections deals with a subgroup $G$ of $\ProperOrthochronousPoincareGroup$,
+and the possibility of extending a unitary representation of $G$ to a larger set within $\ProperComplexPoincareGroup$.
+
\subsection{Analytic Continuation of the Space-Time Translation Group}
+%\todo{a short intro}
+
+Let $a \mapsto U(a)$ be a strongly continuous unitary representation of the additive group of $\RR^4$ (on some separable Hilbert space).
+By a generalization of Stone's Theorem~\cite[Theorem VIII.12]{ReedSimon1},
+there exists a unique projection-valued measure $E$ on $\RR^4$ such that
+\begin{equation}
+ \label{equation:spectral-resolution-translation}
+ U(a) = \int_{\RR^4} \exp(ia \cdot k) \, dE(k) \qquad a \in \RR^4.
+\end{equation}
+Then one can define a vector $P$ of unbounded selfadjoint operators
+\begin{equation*}
+ P_i = \int_{\RR^4} k_i \, dE(k) \qquad i=0,\ldots,3
+\end{equation*}
+which have a common dense domain $D$ and satisfy
+\begin{equation*}
+ a \cdot P = \int_{\RR^4} a \cdot k \, dE(k) \qquad a \in \RR^4.
+\end{equation*}
+We are specifically interested in the representation
+\begin{equation*}
+ U(a) \defequal U(a,I) \qquad a \in \RR^4
+\end{equation*}
+obtained by restricting the unitary representation of the Poincaré group $\RestrictedPoincareGroup$ on Fock space to the subgroup of spacetime translations.
+In this case the vector operator $P$ carries the physical meaning of energy-momentum,
+and we impose the so-called \emph{spectrum condition}
+\begin{equation*}
+ \langle a \cdot P \rangle_{\psi} \ge 0 \qquad
+ \forall \psi \in D \;
+ \forall a \in \ClosedForwardCone,
+\end{equation*}
+where $\ClosedForwardCone \defequal \braces{a \in \RR^4 \vcentcolon a \cdot a \ge 0, a^0 \ge 0}$ is the \emph{closed forward cone}\index{cone!closed forward}\nomenclature[V]{$\ClosedForwardCone$}{closed forward cone}.
+It can be shown \cite{Uhlmann1961} that the spectrum condition is equivalent to the statement that
+the support of the spectral measure is contained in the closed forward cone, i.e.\ $\supp(E) \subset \ClosedForwardCone$.
+
+Spectral calculus allows us to extend $a \mapsto U(a)$ to complex arguments $z \in \CC^4$ by simply replacing $a$ with $z$ in the spectral resolution~\eqref{equation:spectral-resolution-translation} of $U(a)$.
+However, one obtains, in general, an unbounded operator.
+It is a consequence of the spectrum condition that $U(z)$ is bounded whenever $z$ lies in the \emph{closed forward tube}\index{tube!closed}\nomenclature[T]{$\ClosedForwardTube$}{closed forward tube} $\ClosedForwardTube \defequal \RR^4 + i\ClosedForwardCone$.
+Observe that the set $\ClosedForwardTube$ is closed under vector addition and thus forms a commutative monoid; it is not a group.
+
+\begin{proposition}{}{}
+ For every $z \in \ClosedForwardTube$ the operator
+ \nomenclature[U]{$U(z)$}{complex translation}
+ \begin{equation}
+ \label{equation:definition-complex-translation}
+ U(z) \defequal \int_{\ClosedForwardCone} \exp(iz \cdot k) \, dE(k)
+ \end{equation}
+ is bounded.
+ Moreover, $U(w+z) = U(w) U(z)$ for all $w,z \in \ClosedForwardTube$.
+\end{proposition}
+
+\begin{proof}
+ By a general property of spectral integrals~\cite[Proposition 4.18]{Schmüdgen2012},
+ the operator $U(z)$ is bounded if (and only if)
+ the function $f(k) = \exp(iz \cdot k)$ is bounded $E$-almost everywhere.
+ In view of the fact that $E$ is supported in the closed forward cone $\ClosedForwardCone$,
+ it is sufficient to show that $f$ is bounded on $\ClosedForwardCone$.
+ %the $E$-essential supremum of the function
+ Since $z$ lies in the closed forward tube, $z=x+iy$ with $x \in \RR^4$ and $y \in \ClosedForwardCone$.
+ Now $\abs{f(k)} = \exp(-y \cdot k)$, and on $\ClosedForwardCone$ this is bounded by $1$ because $y \cdot k \ge 0$ for all $k \in \ClosedForwardCone$.
+
+ The identity $U(w+z) = U(w) U(z)$ follows from $\exp(i(w+z) \cdot k) = \exp(iw \cdot k) \exp(iz \cdot k)$
+ and the boundedness of the operators, see~\cite[Proposition 4.16(iii) and (v)]{Schmüdgen2012}.
+\end{proof}
+
+\begin{proposition}{}{}
+ If $(b,\Lambda) \in \RestrictedPoincareGroup$ and $z \in \ClosedForwardTube$, then $\Lambda z \in \ClosedForwardTube$ and
+ \begin{equation*}
+ U(b,\Lambda) U(z) U(b,\Lambda)^* = U(\Lambda z).
+ \end{equation*}
+\end{proposition}
+
+\begin{proof}
+ We exploit the uniqueness of the projection-valued measure $E$ satisfying~\eqref{equation:spectral-resolution-translation}.
+ Since $\Lambda$ acts continuously on $\RR^4$, $\Lambda^{-1} S$ is a Borel set whenever $S \subset \RR^4$ is, and
+ \begin{equation*}
+ F(S) \defequal U(b,\Lambda) E(\Lambda^{-1} S) U(b,\Lambda)^*
+ \qquad S \in \BorelSigmaAlgebra{\RR^4}
+ \end{equation*}
+ is a well-defined projection-valued measure on $\RR^4$.
+ By the Transformation Formula for Spectral Integrals~\cite[Proposition 4.24]{Schmüdgen2012}, we have
+ \begin{align}
+ \int_{\RR^4} \exp(iz \cdot k) \, dF(k)
+ &= U(b,\Lambda) \bracks[\bigg]{\,\int_{\RR^4} \!\exp(iz \cdot \Lambda k) \, dE(k)} U(b,\Lambda)^* \nonumber\\
+ &= U(b,\Lambda) \bracks[\bigg]{\,\int_{\RR^4} \!\exp(i \Lambda^{-1} z \cdot k) \, dE(k)} U(b,\Lambda)^* \nonumber\\
+ \label{equation:F-integral}
+ &= U(b,\Lambda) U(\Lambda^{-1} z) U(b,\Lambda)^*
+ \end{align}
+ for all $z \in \ClosedForwardTube$.
+ In particular, for $z=a \in \RR^4$ the last term equals
+ \begin{equation*}
+ U(b,\Lambda) U(\Lambda^{-1} a) U(b,\Lambda)^* = U(a) \qquad a \in \RR^4,
+ \end{equation*}
+ which can be seen by applying $U$ to the identity
+ \begin{equation*}
+ (b,\Lambda) (\Lambda^{-1} a, I) (b,\Lambda)^{-1} = (a,I).
+ \end{equation*}
+ Hence, $U(a) = \int \exp(ia \cdot k) dF(k)$ for all $a \in \RR^4$. We conclude $E = F$.
+ Now~\eqref{equation:F-integral} asserts that $U(z) = U(b,\Lambda) U(\Lambda^{-1} z) U(b,\Lambda)$ for all $z \in \ClosedForwardTube$
+ and a substitution of $z$ by $\Lambda z$ yields the desired identity.
+\end{proof}
+
+%\begin{proposition}{Analyticity of the Complex Translation Monoid}{analyticity-complex-translations}
+ \begin{proposition}{\textmd{\cite[Theorem 4]{Uhlmann1961}}}{analyticity-complex-translations}
+ The operator-valued map $z \mapsto U(z)$ given by~\eqref{equation:definition-complex-translation} is
+ strongly continuous on $\ClosedForwardTube$ and
+ analytic on $\OpenForwardTube$.
+\end{proposition}
+
+\todo{Explain what it means for an operator-valued function of several complex variables to be analytic.}
+
+Next we consider an operator-valued tempered distribution $u$ that is \emph{covariant}
+in the sense that it obeys the relativistic transformation law
+\begin{equation}
+ \label{equation:covariance-distribution}
+ U(g) u(f) U(g)^* = u(f_g) \qquad g \in \RestrictedPoincareGroup, f \in \schwartz{\RR^4},
+\end{equation}
+where $f_g(x) = f(g^{-1} x)$ for all $x \in M$.
+In particular, if $g=(a,I)$ is the translation by a vector $a \in \RR^4$,
+then~\eqref{equation:covariance-distribution} and the invariance of the vacuum vector $\FockVacuum$ imply
+\begin{equation}
+ \label{equation:real-translation-law}
+ U(a) u(f) \FockVacuum = u(f_a) \FockVacuum \qquad \forall a \in \RR^4.
+\end{equation}
+We would like to extend this law to complex translation vectors,
+but translating a function defined on $\RR^4$ by a complex vector is not a sensible operation.
+Nevertheless, we have $\FT{f_a}(p) = \exp(ia \cdot p) \ft{f}(p)$ in Fourier space,
+and $\exp(iz \cdot p) \ft{f}(p)$ is a well defined function of $p \in \RR^4$ even when $z \in \CC^4$.
+The obvious idea would be to define $f_z$ as the inverse Fourier transform of this function.
+This does not work because $\exp(iz \cdot p) \ft{f}(p)$ is generally not in the Schwartz class.
+However, thanks to the spectrum condition we may modify this function outside of the closed forward cone.
+
+\begin{lemma}{}{depends-only-on-restriction}
+ Let $u$ be a covariant operator-valued tempered distribution.
+ Then the vector $u(f) \FockVacuum$, where $f \in \schwartz{\RR^4}$,
+ depends only on the restriction of $\ft{f}$ to $\ClosedForwardCone$.
+\end{lemma}
+
+\begin{proof}
+ We consider a Schwartz function $g \in \schwartz{\RR^4}$ and
+ the operator $G = \int g(k) dE(k)$,
+ where $E$ is the unique projection-valued measure on $\RR^4$ such that
+ $U(a) = \int \exp(ik \cdot a) dE(k)$ for all $a \in \RR^4$.
+ Let $g(k) = (2 \pi)^{-2} \int \ift{g}(a) \exp(ia \cdot k) da$ be the Fourier decomposition of $g$.
+ \begin{multline*}
+ \hspace{1cm} (2 \pi)^2 G = \int_{\ClosedForwardCone} \!\int_{\RR} \ift{g}(a) \exp(ia \cdot k) \, da \, dE(k) = \\
+ = \int_{\RR} \ift{g}(a) \!\int_{\ClosedForwardCone} \exp(ia \cdot k) \, dE(k) \ da
+ = \int_{\RR} \ift{g}(a) U(a) \, da \hspace{1cm}
+ \end{multline*}
+ \question{Darf ich hier wirklich die Integrationsreihenfolge vertauschen?}
+
+ Recall that the Fourier transform of $u$ is defined by $\ft{u}(f) = u(\ft{f}@@)$ for $f \in \schwartz{\RR^4}$.
+ We obtain the action of the translation group on $\ft{u}(\ft{f}@@)\FockVacuum$ by definition chasing and~\eqref{equation:real-translation-law}:
+ \begin{equation*}
+ U(a) \ft{u}(\ft{f}@@)\FockVacuum
+ = U(a) u(f)\FockVacuum
+ = u(f_a)\FockVacuum
+ = \ft{u}(\ft{f}_a)\FockVacuum
+ = \ft{u}(\ft{f}e_a)\FockVacuum
+ \end{equation*}
+ Here $e_a$ stands for the function $e_a(p) = \exp(ia \cdot p)$.
+ \begin{equation*}
+ G @\ft{u}(\ft{f}@@)\FockVacuum
+ = \int \ift{g}(a) @\ft{u}(\ft{f}e_a)\FockVacuum \, da
+ = \ft{u} \parens[\bigg]{\ft{f} \int \ift{g}(a) e_a da} \FockVacuum
+ = \ft{u}(\ft{f} g) \FockVacuum
+ \end{equation*}
+ The second identity is due to the continuity of the vector-valued map $f \mapsto u(f) \FockVacuum$.
+ If the support of $g$ does not intersect the support of $E$, i.e.\ the closed forward cone, then $G=0$.
+ Thus, $\ft{u}(\ft{f} g) \FockVacuum = 0$.
+ This proves that $u(f_1) \FockVacuum = u(f_2) \FockVacuum$ when $\supp(\ft{f_1} - \ft{f_2}) \subset \ClosedForwardCone$.
+\end{proof}
+
+This fact inspires the definition
+\begin{equation*}
+ f_z \defequal d_z * f \qquad z \in \ClosedForwardTube
+\end{equation*}
+where $d_z$ is any Schwartz function on $\RR^4$ such that $\FT{d_z}(p) = \exp(iz \cdot p)$ for all $p \in \ClosedForwardCone$.
+Such a function does exist \todo{elaborate, smooth cutoff}. Then $f_z$ will be Schwartz class as well.
+Moreover, $u(f_z) \FockVacuum$ does not depend on the specific choice of $d_z$, by~\cref{lemma:depends-only-on-restriction}.
+
+%\begin{lemma}{}{}
+ %For every $z \in \ClosedForwardTube$ there exists a Schwartz function $d_z \in \schwartz{\RR^4}$
+ %such that $\ft{e_z} \in \schwartz{\RR^4}$ and $\ft{e_z}(p) = \exp(iz \cdot p)$ for $p \in \ClosedForwardCone$.
+%\end{lemma}
+
+\begin{proposition}{}{}
+ Let $u$ be a covariant operator-valued tempered distribution,
+ and let $f \in \schwartz{\RR^4}$ be a test function. Then we have,
+ in generalization of~\eqref{equation:real-translation-law},
+ \begin{equation*}
+ U(z) u(f) \FockVacuum = u(f_z) \FockVacuum \qquad \forall z \in T_+.
+ \end{equation*}
+\end{proposition}
+
+\begin{proof}
+ By \cref{proposition:analyticity-complex-translations},
+ the function $z \mapsto U(z) u(f) \FockVacuum$ is analytic on the open forward tube.
+ \todo{Zeige, dass $z \mapsto u(f_z) \FockVacuum$ ebenfalls analytisch ist.
+ Dann folgt die Behauptung wohl mit Edge of the Wedge~\cite[Theorem 2-17]{Streater1964}}
+\end{proof}
+
\subsection{Complex Lorentz Boosts}
+The Lorentz boosts $\Lambda(t)$ given by
+the matrices~\eqref{equation:lorentz-boost} in standard representation
+have a natural interpretation for complex parameters,
+since the hyperbolic functions $\cosh$ and $\sinh$ extend analytically to the whole complex plane.
+In view of Lemma xxx it follows immediately that the matrix-valued function $\CC \ni w \mapsto \Lambda(w)$ is entire analytic.
+In particular, the vector-valued function $\CC \ni w \mapsto \Lambda(w) z$ is entire analytic for every fixed vector $z \in \CC^4$.
+
+We are particularly interested in the case of a purely imaginary parameter.
+The relations $\cosh iz = \cos z$ and $\sinh iz = i \sin z$
+between the complex hyperbolic and trigonometric functions imply
+
+\begin{equation*}
+ \Lambda(is) = \begin{pmatrix}
+ \phantom{i}\cos(2 \pi @ s) & i\sin(2 \pi @ s) & \; 0 \; & \; 0 \; \\
+ i\sin(2 \pi @ s) & \phantom{i}\cos(2 \pi @ s) & 0 & 0 \\
+ 0 & 0 & 1 & 0 \\
+ 0 & 0 & 0 & 1 \\
+ \end{pmatrix}
+ \qquad \forall s \in \RR.
+\end{equation*}
+
+\begin{equation*}
+ \Lambda(is) (x+iy) =
+ \begin{pmatrix}
+ \cos(2 \pi @ s) x^0 - \sin(2 \pi @ s) y^1 \\
+ \cos(2 \pi @ s) x^1 - \sin(2 \pi @ s) y^0 \\
+ x^2 \\
+ x^3
+ \end{pmatrix}
+ +i
+ \begin{pmatrix}
+ \sin(2 \pi @ s) x^1 + \cos(2 \pi @ s) y^0 \\
+ \sin(2 \pi @ s) x^0 + \cos(2 \pi @ s) y^1 \\
+ y^2 \\
+ y^3
+ \end{pmatrix}
+\end{equation*}
+
+We
+
+\begin{equation*}
+ \mathcal{J} \defequal \Lambda(i/2) = \begin{pmatrix}
+ -1 & 0 & \; 0 \; & \; 0 \; \\
+ 0 & -1 & 0 & 0 \\
+ 0 & 0 & 1 & 0 \\
+ 0 & 0 & 0 & 1 \\
+ \end{pmatrix}
+\end{equation*}
+
+\begin{equation*}
+ \mathcal{J}_{\pm} \defequal \Lambda(\pm i/4) = \begin{pmatrix}
+ 0 & \pm i & \; 0 \; & \; 0 \; \\
+ \pm i & 0 & 0 & 0 \\
+ 0 & 0 & 1 & 0 \\
+ 0 & 0 & 0 & 1 \\
+ \end{pmatrix}
+\end{equation*}
+
+We now turn to the unitary representation of (real) Lorentz boosts
+\begin{equation*}
+ V(t) \defequal U \parens[\big]{0,\Lambda(t)} \qquad t \in \RR
+\end{equation*}
+on Fock space and aim for an analytic extension similar to the previous section.
+By Stone's theorem theorem there exists a unique selfadjoint operator $K$ such that
+\begin{equation*}
+ V(t) = \exp(itK) = \int_{\RR} \exp(it \lambda) \,dE_K(\lambda),
+\end{equation*}
+where $E_K$ is the spectral measure on $\RR$ associated to $K$.
+Now we define \emph{complex Lorentz boosts} to be the operators
+\nomenclature[V]{$V(z)$}{complex Lorentz boost}
+\begin{equation*}
+ V(z) \defequal \int_{\RR} \exp(iz \lambda) \,dE_K(\lambda) \qquad z \in \CC.
+\end{equation*}
+In contrast to the previous section, we
+
+
+\begin{lemma}{}{}
+ Suppose $A$ is a selfadjoint unbounded operator on some Hilbert space $\hilb{H}$.
+ For each complex number $z$ define the closed normal operator $V(z) = e^{izA}$ by means of functional calculus.
+ Let $g \in \schwartz{\RR}$ be a Schwartz function.
+ \begin{enumerate}
+ \item $V(z) V(w) = V(z + w)$ for all $z,w \in \CC$.
+ \item The operator $g(A)$ is bounded, and its range is contained in the domain of $V(z)$ for all $z \in \CC$.
+ \item The operator $V(z) g(A)$ is bounded for all $z \in \CC$, and has spectral resolution
+ \begin{equation*}
+ V(z) g(A) = \int e^{iz \lambda} g(\lambda) dE_A(\lambda).
+ \end{equation*}
+ \item The function $z \mapsto V(z) g(A)$ is entire analytic.
+ \end{enumerate}
+\end{lemma}
+
+Remember that a \emph{core}\index{operator!core for an} for a closed densely defined unbounded operator $T$
+is, by definition, a linear subspace $\mathcal{D}_0$ of its domain $\Domain{T}$ such that
+the closure of the restriction of $T$ to $\mathcal{D}_0$ coincides with $T$.
+%symbolically $\overline{T \vert \mathcal{D}_0} = T$.
+Each core of $T$ is necessarily a dense subspace of $\Domain{T}$,
+but a dense subspace of $\Domain{T}$ need not be a core for $T$.
+
+\begin{lemma}{A Common Core for All Complex Lorentz Boosts}{common-core-for-complex-lorentz-boots}
+ Adopt the notation of the foregoing lemma. The linear subspace
+ \begin{equation*}
+ \mathcal{D}_0 = \Span \braces{\ran g(K) \vcentcolon g \in \schwartz{\RR}}
+ \end{equation*}
+ is a core for $V(z)$ for every $z \in \CC$.
+\end{lemma}
+
+\begin{proof}
+ xxx
+\end{proof}
+
+\subsection{Application to the Energy Density}
+
+\bluetext{Achtung: Dieser Abschnitt ist noch roh, lückenhaft und enthält inkonsistente Notation und falsche Aussagen.}
+The following three Lemmas are variations of the arguments
+brought forward by~\citeauthor{Bisognano1975} in their proof of \cref{theorem:bisognano-wichmann}.
+The main difference is that we state xxx and xxx as operator identities without reference to a field operator,
+and proof xxx for arbitrary Lorentz-covariant operator-valued distributions
+rather than products of field operators.
+This generalization is necessary for the application to the energy density.
+In addition, we provide in \cref{chapter:convolution} a complete proof of the convolution formula for vector-valued distributions.
+
+Roughly speaking, the following Lemma asserts that a translation by a complex vector
+followed by a suitable imaginary boost is again a complex translation.
+
+\begin{lemma}{}{}
+Let $z = x + iy \in \OpenForwardTube$ with $x,y$ real, and suppose $y^3=y^4=0$.
+ \begin{enumerate}
+ \item If $x \in \rightwedge$, then for all $s \in [0,1/4]$
+ \begin{equation*}
+ \Lambda(is) z \in \OpenForwardTube, \qquad
+ \ran U(z) \subset \dom V(is), \qquad
+ V(is) U(z) = U \parens[\big]{\Lambda(is) z}.
+ \end{equation*}
+ \item If $x \in \leftwedge$, then the above holds for all $s \in [0,-1/4]$.
+ \end{enumerate}
+\end{lemma}
+\nomenclature[dom]{$\dom T$}{domain of the operator $T$\nomnorefpage}
+\nomenclature[ran]{$\ran T$}{range of the operator $T$\nomnorefpage}
+
+\begin{proof}
+ xxx
+
+ \noindent\begin{minipage}{0.5\textwidth}
+ The vector-valued function $\CC \ni s \mapsto \Lambda(is) z$ is entire analytic.
+ In particular it is continuous, and we have shown that it maps the compact subset $[0,1/4]$ into the open set $\OpenForwardTube$.
+ This implies that there exists a connected open neighborhood $N \subset \CC$ of $[0,1/4]$ such that $\Lambda(is) z \in \OpenForwardTube$ for all $s \in N$.
+
+ \end{minipage} \hfill
+ \begin{minipage}{0.45\textwidth}
+ \begin{center}
+ \begin{tikzpicture}[baseline=10]
+ \draw[->] (-1,0) -- (3,0) node[right] {\footnotesize$\Real s$};
+ \draw[->] (0,-1) -- (0,2) node[left] {\footnotesize$\Imag s$};
+ \draw[faunat,thick,{Parenthesis[]}-{Parenthesis[]}] (0,-0.5) -- (0,0.5);
+ \draw[thick,{Bracket[]}-{Bracket[]}] (-0.3pt,0) -- (2,0);
+ \draw (1,1) node {$N$};
+ \draw (2,0) node[above] {\footnotesize$\tfrac{1}{4}$};
+ \draw plot [smooth cycle] coordinates {(2.5,0) (2,1) (1,0.7) (0.3,1) (-0.5,0.7) (-0.3,-0.7) (1.6,-0.7)};
+ \end{tikzpicture}
+ \end{center}
+ \end{minipage}
+
+ Let $\xi \in \hilb{F}$ be arbitrary, and let $\eta$ be in the common dense domain $\mathcal{D}_0$ of the operators $V(is)$ from \cref{lemma:common-core-for-complex-lorentz-boots}.
+ Then the function $f_1(s) = \innerp{V(is)^* \eta}{U(z) \xi}$ is well-defined, and entire analytic by Lemma xxx.
+ The function $f_2(s) = \innerp{\eta}{U(\Lambda(is) z) \xi}$ is analytic on $N$, by \cref{proposition:analyticity-complex-translations}.
+ By Lemma xxx, $f_1$ and $f_2$ agree in an open real neighborhood $is$.
+ Since $N$ is an open neighborhood of $0$, there is an $\epsilon >0$ such that $i(-\epsilon,\epsilon) \subset N$.
+ It follows that $f_1 \equiv f_2$ on $N$.
+ core \ldots
+\end{proof}
+
\begin{lemma}{}{}
- Suppose $A$ is a selfadjoint operator on some Hilbert space $\hilb{H}$.
- For all complex numbers $z$ define a closed normal operator $V(z) = e^{izA}$ by means of functional calculus.
- Let $g$ be a xxx function. Then the range of the bounded operator $g(A)$ is contained in the domain of $V(z)$ for all $z$, and
+ Let $x \in \rightwedge$
+\begin{equation*}
+ \stronglim_{\varepsilon \downarrow 0} V(i/4) U(x+i \varepsilon e_0)
+ = U \parens[\big]{V(i/4)x}
+ = \stronglim_{\varepsilon \downarrow 0} V(-i/4) U(\mathcal{J}x+i \varepsilon e_0)
+\end{equation*}
+\end{lemma}
+
+\begin{proof}
+ xxx
+\end{proof}
+
+\begin{lemma}{}{}
+ Suppose that $u$ is a covariant operator-valued tempered distribution.
+ Let $f \in \schwartz{M}$ with $\supp f \subset \rightwedge$, and
+ let $g \in \schwartz{M}$ be arbitrary. Then
\begin{equation*}
- V(z) g(A) = \int e^{iz \lambda} g(\lambda) dE_A(\lambda).
+ V(i/2) g(K) u(f) \FockVacuum = g(K) u(f_{\mathcal{J}}) \FockVacuum
\end{equation*}
\end{lemma}
-\subsection{A Convolution Theorem for Vector-Valued Tempered Distributions}
+Here, $K$ is the infinitesimal generator of the group $t \mapsto V(t)$ of real Lorentz boosts,
+$\FockVacuum$ is the Fock vacuum, and $\mathcal{J}$ is the Lorentz transformation given by the diagonal matrix $\diag(-1,-1,1,1)$.
-\blockcquote{Bisognano1975}{%
- The extension to vector-valued tempered distributions is trivial.
-}
+\begin{proof}
+ xxx
+\end{proof}
+
+\begin{equation*}
+ \Delta^{-1/2} g(K) \energydensity(f) \FockVacuum = g(K) \energydensity(f^J) \FockVacuum
+\end{equation*}
+
+Die Anwendung auf die Energiedichte $\energydensity$:
+
+\begin{proposition}{}{main-result}
+ Suppose $W \subset M$ is any wedge domain, with associated modular operator $\Delta_W$ and modular Hamiltonian $K_W$.
+ Let $f \in \schwartz{M}$ with $\supp f \subset W$, and
+ let $h \in \schwartz{M}$ be arbitrary. Then
+ \begin{equation*}
+ \norm{\Delta_W^{-1/2} h(K_W) \energydensity(f) \FockVacuum}
+ = \norm{h(K) \energydensity(f_{\mathcal{J}g}) \FockVacuum},
+ \end{equation*}
+ where $K$ is the modular Hamiltonian of the right wedge $\rightwedge$,
+ and $g$ is any element of $\RestrictedPoincareGroup$ such that $W = g \rightwedge$,
+ and $\mathcal{J} = \diag(-1,-1,1,1)$.
+\end{proposition}
+In der Ungleichung aus~\cite{Much2022} ist $h$ eine Gauß-Funktion.
+
+\section{Calculating Gaussians of the Modular Hamiltonian}
+coming soon\ldots
\chapterbib
\cleardoublepage