summaryrefslogtreecommitdiffstats
path: root/stresstensor.tex
diff options
context:
space:
mode:
Diffstat (limited to 'stresstensor.tex')
-rw-r--r--stresstensor.tex36
1 files changed, 19 insertions, 17 deletions
diff --git a/stresstensor.tex b/stresstensor.tex
index 4c128c2..79c0930 100644
--- a/stresstensor.tex
+++ b/stresstensor.tex
@@ -32,7 +32,9 @@ as a service to the reader.
x \cdot y = g_{\mu \nu} x^{\mu} y^{\nu} = x^0y^0 - x^1 y^1 - x^2 y^2 - x^3 y^3
\end{equation*}
points $x = (x^0,x^1,x^2,x^3) \in M$ are sometimes written $x = (x^0,\symbfit{x})$ with separated time and space coordinates
- \item Given a complex-valued function $f$ on $M$, we define its \emph{Fourier transform} $\ft{f}\,$ by
+ \item Given a complex-valued function $f$ on $M$,
+ we define its \emph{Fourier transform}\index{Fourier transform} $\ft{f}\,$ by
+ \nomenclature[f]{$\ft{f}$}{Fourier transform of $f$}
\begin{equation}
\label{fourier-transform}
\ft{f}(p) \defequal \int_{M} e^{i p \cdot x} f(x) \, dx
@@ -93,7 +95,7 @@ as a service to the reader.
\begin{equation*}
\realschwartz{M} \ni f \mapsto \varphi(f) = \Phi_{\mathrm{S}}(Ef) = \frac{1}{\sqrt{2}} \parens*{a(Ef) + a(Ef)^\dagger}
\end{equation*}
- This extedns to complex valued test functions $f \in \schwartz{M}$
+ This extends to complex valued test functions $f \in \schwartz{M}$
\begin{equation*}
\varphi(f) = \frac{1}{\sqrt{2}} \parens*{a(E\bar{f}) + a(Ef)^\dagger}
\end{equation*}
@@ -243,7 +245,7 @@ but one may obtain an operator with trivial domain.
We will use the symbol $\QFequal$ between quadratic forms or operators
to indicate their equality as quadratic forms.
-TODO(statement about domains?)
+\todo{statement about domains?}
A natural question is how the smeared operators relate to the pointwise ones.
@@ -287,7 +289,7 @@ for all $\psi,\psi' \in D$.
The process of renormalizing a product of field operators
has the purpose of discarding infinite constants
that occur when calculating the vacuum expectation value.
-(TODO: present physicists way of introducing normal ordering)
+\todo{present physicists way of introducing normal ordering}
Now let us extract the algebraic essence of the situation.
The objects of our calculations are the field operators $\Phi(f)$,
@@ -314,7 +316,7 @@ freely generated by the elements of $\hilb{H}$.
The unit of the algebra is $e$.
This in not quite what we want
-TODO(explain need for commutation relations)
+\todo{explain need for commutation relations}
By abstract algebra, this is viable
by forming the quotient of the free algebra
with respect to the two-sided ideal
@@ -332,7 +334,7 @@ where $z,z' \in \hilb{H}$.
where $e$ is the unit of the algebra.
\end{definition}
-TODO(introduce $\Phi$ as representation of $\WeylAlg$)
+\todo{introduce $\Phi$ as representation of $\WeylAlg$}
\begin{definition}{Annihilator and Creator}{}
Suppose $\WeylAlg$ is the infinitesimal Weyl algebra
@@ -383,8 +385,8 @@ The cases $r=1$ and $r=2$ read
\normord{z} &=
\frac{1}{\sqrt{2}} \parens[\big]{\weylannihilator(z) + \weylcreator(z)} = z, \\
\normord{z_1 z_2} &= \frac{1}{2}
- \parens[\big]{ \weylannihilator(z_1) \weylannihilator(z_2) + \weylcreator(z_1) \weylannihilator(z_2)
- + \weylcreator(z_2) \weylannihilator(z_1) + \weylcreator(z_1) \weylcreator(z_2) }.
+ \parens[\big]{\weylannihilator(z_1) \weylannihilator(z_2) + \weylcreator(z_1) \weylannihilator(z_2)
+ + \weylcreator(z_2) \weylannihilator(z_1) + \weylcreator(z_1) \weylcreator(z_2)}.
\end{align*}
This suggests that the normally ordered product $\normord{z_1 \!\cdots z_r}$
is symmetric in $z_1,\ldots,z_n$. This is in fact true, and becomes evident
@@ -399,7 +401,7 @@ if one brings~\eqref{equation:normal-ordering} into the equivalent form
\prod_{i=1\vphantom{S}}^{s} \weylcreator(z_{\sigma(i)})
\prod_{\mathclap{j=s+1\vphantom{S}}}^{r} \weylannihilator(z_{\sigma(j)})
\end{gather}
-by basic combinatorial arguments (TODO: further explanation?).
+by basic combinatorial arguments \todo{further explanation?}.
In~\cite{Klein1973}, the factor $\frac{1}{s!(r-s)!}$ is erroneously missing.
@@ -488,7 +490,7 @@ In terms of creation and annihilation operators we have
\label{derivative-free-field}
D \varphi(f) = \frac{1}{\sqrt{2}} \parens*{a(ED^{\dagger}f)^{\dagger} + a(E\overline{D^{\dagger}f})}.
\end{equation}
-In Fourier space the operator $D^\dagger$ corresponds to muliplication with the polynomial
+In Fourier space the operator $D^\dagger$ corresponds to multiplication with the polynomial
\begin{equation*}
\ft{D}(p) \defequal \sum_{\alpha} i^{\abs{\alpha}} a_{\alpha} (+p^0)^{\alpha_0} (-p^1)^{\alpha_1} (-p^2)^{\alpha_2} (-p^3)^{\alpha_3}
\end{equation*}
@@ -562,7 +564,7 @@ this approach incurs significant technical difficulties.
\end{lemma}
Note that $K$ has a remaining dependence on $f$ via $\chi$
-even thogh the notation does not indicate this.
+even though the notation does not indicate this.
This is made explicit in the alternative integral representation
\begin{equation}
\label{equation:alternative-integral-representation}
@@ -663,7 +665,7 @@ The following assertion is key to realizing the idea of taking the limit $f \to
C \norm{(1+H)^l \psi'} \norm{(1+H)^l \psi}.
\end{equation*}
More specifically, it is sufficient to choose $l > rd + r/2$,
- where $d$ is the highest order of differentiation occuring in $D_1, \ldots, D_r$.
+ where $d$ is the highest order of differentiation occurring in $D_1, \ldots, D_r$.
\end{lemma}
The Hamilton operator $H$ acts on $n$-particle states $\psi_n$ as follows:
@@ -869,7 +871,7 @@ In the following proof it will be convenient to use the abbreviation
\sqrt{\sum_{m=0}^{\infty} \norm{(1+H)^l \psi'_m}_2^2} =
\sqrt{\sum_{m=0}^{\infty} a'^2_m},
\end{equation*}
- and similar for $\psi$, by definition of the inner prouct
+ and similar for $\psi$, by definition of the inner product
and because $((1+H)^l \psi')_m = (1+H)^l \psi'_m$ for all $m$.
\end{myproof}
@@ -898,7 +900,7 @@ In the following proof it will be convenient to use the abbreviation
by \cref{lemma:integral-kernel-h-bound}.
Moreover, the integrand converges pointwise to $K_{\psi'\!,\psi}(p_1,\ldots,p_r)$, since $\ft{f} \to 1$ when $f \to \delta_x$.
- TODO(With of choice of FT constants, $\ft{f} \to 1/(2\pi)^2$. Change here or change def?)
+ \todo{With of choice of FT constants, $\ft{f} \to 1/(2\pi)^2$. Change here or change def?}
Since the Fourier transformation of tempered distribution
is a continuous mapping $\tempdistribnoarg \to \tempdistribnoarg$,
@@ -1076,9 +1078,9 @@ where
\end{proposition}
\begin{proposition}{}{}
- The Fock vaccum $\fockvaccum$ lies in the domain of $\energydensity(f)\QFop{}$
+ The Fock vacuum $\FockVacuum$ lies in the domain of $\energydensity(f)\QFop{}$
for all test functions $f \in \schwartz{M}$
- and $\energydensity(f)\QFop{}\fockvaccum$ is the vector $\psi$ defined by
+ and $\energydensity(f)\QFop{}\FockVacuum$ is the vector $\psi$ defined by
\begin{equation*}
\psi_2(p,p') = \frac{\sqrt{2}}{4} (m^2 - \bar{p} \cdot p') \ft{f}(-p-p')
\end{equation*}
@@ -1124,7 +1126,7 @@ where
Then we obtain the desired $H$-bound with $l=a+r/2$.
Recall that the Schwartz class is preserved by Fourier transform, translation and multiplication with polynomials.
- Moreover, it is well known that Schwartz functions are square-integrable with repect to the Lorentz invariant measure on the mass shell.
+ Moreover, it is well known that Schwartz functions are square-integrable with respect to the Lorentz invariant measure on the mass shell.
Hence,
\begin{equation*}
\int dp_1 \abs{\ft{f}(p_1 + \cdots + p_s - p_{s+1} - \cdots - p_r)}^2