summaryrefslogtreecommitdiffstats
path: root/stresstensor.tex
blob: 79c0930cb8de2d558d977a42bfc0b901c4659b1a (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
\chapter{Construction of the Stress Tensor of~a~Free~Scalar~Quantum~Field}
\label{chapter:stress-tensor}

\begin{center}
  \emph{Note: Work in Progress}
\end{center}

\begin{equation*}
  H = \tfrac{1}{2} \parens*{(\partial_t \phi)^2 + \abs{\nabla_{\!\!\symbfit{x}} \phi}^2 + m^2 \phi^2} 
\end{equation*}

At the end of this \namecref{chapter:stress-tensor} 
we will have gained the ability to rigorously define
arbitrary renormalized products of the free field and its derivatives
as a densely defined quadratic-form valued tempered distribution,
which on the dense subspace of the smooth vectors of the Hamiltonian
is realized by essentially selfadjoint operators.

\section{Choosing Conventions and Fixing Notation}
\label{section:conventions}

It is an unfortunate reality of quantum physics literature that
there is a great deal of variation in notation and choice of signs and constants.
While this does not affect the physical or mathematical content,
it is a hindrance when working with formulas from multiple sources.
In the present \namecref{section:conventions} we detail our choices
as a service to the reader.

\begin{itemize}
  \item \emph{Minkowski space} $M=\RR^4$ equipped with the \emph{Lorentz bilinear form} (or metric)
    \begin{equation*}
      x \cdot y = g_{\mu \nu} x^{\mu} y^{\nu} = x^0y^0 - x^1 y^1 - x^2 y^2 - x^3 y^3
    \end{equation*}
    points $x = (x^0,x^1,x^2,x^3) \in M$ are sometimes written $x = (x^0,\symbfit{x})$ with separated time and space coordinates
  \item Given a complex-valued function $f$ on $M$,
    we define its \emph{Fourier transform}\index{Fourier transform} $\ft{f}\,$ by
    \nomenclature[f]{$\ft{f}$}{Fourier transform of $f$}
    \begin{equation}
      \label{fourier-transform}
      \ft{f}(p) \defequal \int_{M} e^{i p \cdot x} f(x) \, dx
    \end{equation}
    whenever the integral converges. The \emph{inverse Fourier transform} is defined by
    \begin{equation*}
      \label{inverse-fourier-transform}
      \ift{f}(p) \defequal \frac{1}{(2 \pi)^2} \int_{M} e^{-i p \cdot x} f(x) \, dx.
    \end{equation*}
  \item To a mathematician $\overline{\phantom{z}}$ usually means complex conjugation and ${}^*$ indicates the Hilbert adjoint of an operator,
    while a physicist may read ${}^*$ as complex conjugation and
    denotes the Hilbert adjoint with ${}^{\dagger}$.
    We avoid confusion by using $\overline{\phantom{z}}$ for complex conjugation
    and ${}^{\dagger}$ for the Hilbert adjoint exclusively.
  \item $\schwartz{M}$ is the space of complex-valued Schwartz functions on $M$ \\
    $\realschwartz{M}$ is the space of real-valued Schwartz functions on $M$ 
  \item The \emph{Bosonic Fock space} over a Hilbert space $\hilb{H}$ is denoted $\BosonFock{\hilb{H}}$. \\
    Its \emph{finite particle subspace} is denoted $\BosonFockFinite{\hilb{H}}$.
  \item Abstract free field: The \emph{Segal quantization} $\Phi$ assigns to every
    $g \in \hilb{H}$, a selfadjoint (unbounded) operator $\Phi(g)$ in $\BosonFock{\hilb{H} }$,
    which on the the finite particle subspace is given by
    \begin{equation*}
      \Phi_{\mathrm{S}} (g) = \frac{1}{\sqrt{2}} \parens*{a(g) + a(g)^\dagger} 
    \end{equation*}
    annihilation and creation operators, $g \in \hilb{H}$, $\psi \in \BosonFock{\hilb{H}}$ for $\hilb{H} = L^2(R^4,\Omega_m)$
    \begin{align*}
      \parens[\big]{a(g) \psi} {}_n (k_1, \ldots, k_n)
      &= \sqrt{n+1} \int_M \! \bar{g}(p) \, \psi_{n+1} (p,k_1, \ldots, k_n) \, d\Omega_m(p) \\
      \parens[\big]{a(g)^\dagger \psi} {}_n (k_1, \ldots, k_n)
      &= \frac{1}{\sqrt{n}} \sum_{i=1}^n g(k_i) \, \psi_{n-1} (k_1, \ldots, \widehat{k_i}, \ldots, k_n)
    \end{align*}
    The symbol $\widehat{\hphantom{k_i}}$ over $k_i$ indicates omission.
    \begin{align*}
      \parens[\big]{a(g) \psi} {}_{n-1} (k_1, \ldots, k_{n-1}) 
      &= \sqrt{n} \int_M \! \bar{g}(p) \, \psi_n (p,k_1, \ldots, k_{n-1}) \, d\Omega_m(p) \\
      \parens[\big]{a(g)^\dagger \psi} {}_{n+1} (k_1, \ldots, k_{n+1}) 
      &= \frac{1}{\sqrt{n+1}} \sum_{i=1}^{n+1} g(k_i) \, \psi_n (k_1, \ldots, \widehat{k_i}, \ldots, k_{n+1})
    \end{align*}
    \begin{multline*}
      \parens[\big]{a(g) a(g) \psi} {}_{n-2} (k_1, \ldots, k_{n-2}) = \\
      \sqrt{n} \sqrt{n-1} \int_M \int_M \! \bar{g}(p_1) \bar{g}(p_2) \, \psi_n (p_1,p_2,k_1, \ldots, k_{n-s}) \, d\Omega_m(p_1) d\Omega_m(p_2) \\
    \end{multline*}
    For later use, we also give the action of an $s$-fold product of annihilation operators:
    \begin{multline}
      \label{equation:multiple-annihilation-operators}
      \parens[\big]{a(g_1) \cdots a(g_s) \psi} {}_{n-s} (k_1, \ldots, k_{n-s}) = 
      \sqrt{n (n-1) \cdots (n-s+1)} \cdot {} \\
      \cdot \int_M \!\! d\Omega_m(p_1) \cdots \!\! \int_M \!\! d\Omega_m(p_s) \ \bar{g_1}(p_1) \cdots \bar{g_s}(p_s) \ \psi_n (k_1, \ldots, k_{n-2},p_1,\ldots,p_s)
    \end{multline}
  \item We consider the free Hermitian scalar field of mass $m > 0$. \\
    \emph{mass hyperboloid} $X_m^+ = \braces{p \in M \mid p^2 = m^2, p^0 > 0 }$ 
    with normalized Lorentz invariant measure $\Omega_m$
  \item single particle state space: $\hilb{H} = L^2(X_m^+, \Omega_m)$
    \begin{equation*}
      E : \schwartz{M} \to \hilb{H}, \quad f \mapsto Ef = \left.\ft{f}\,\right\vert {X_m^+}
    \end{equation*}
    We define a $\RR$-linear mapping $\phi$ by
    \begin{equation*}
      \realschwartz{M} \ni f \mapsto \varphi(f) = \Phi_{\mathrm{S}}(Ef) = \frac{1}{\sqrt{2}} \parens*{a(Ef) + a(Ef)^\dagger}
    \end{equation*}
    This extends to complex valued test functions $f \in \schwartz{M}$
    \begin{equation*}
      \varphi(f) = \frac{1}{\sqrt{2}} \parens*{a(E\bar{f}) + a(Ef)^\dagger}
    \end{equation*}
    called the \emph{massive free scalar quantum field} 
  \item
    annihilation and creation operators, $f \in \schwartz{M}$, $\psi \in \BosonFock{\hilb{H}}$
    \begin{align*}
      \parens[\big]{a(f) \psi} {}_n (k_1, \ldots, k_n)
      &= \sqrt{n+1} \int_M \! \overline{Ef(p)} \, \psi_{n+1} (p,k_1, \ldots, k_n) \, d\Omega_m(p) \\
      \parens[\big]{a(f)^\dagger \psi} {}_n (k_1, \ldots, k_n)
      &= \frac{1}{\sqrt{n}} \sum_{i=1}^n Ef(k_i) \, \psi_{n-1} (k_1, \ldots, \widehat{k_i}, \ldots, k_n)
    \end{align*}
\end{itemize}

\begin{equation*}
  \normord{\varphi(f)^2} = \tfrac{1}{2} \parens[\big]{a^{\dagger}(Ef) a^{\dagger}(Ef) + a(Ef) a(Ef)} + a^{\dagger}(Ef) a(Ef) 
\end{equation*}

\begin{equation*}
  \normord{\varphi(f)^2} = \tfrac{1}{2} \parens[\big]{a^{\dagger} a^{\dagger} + a a} + a^{\dagger} a \quad \text{where} \quad a = a(Ef)
\end{equation*}

\begin{equation*}
  \innerp{\psi'}{\normord{\varphi(f)^2} \,\psi} = \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \innerp{\psi'_m}{\normord{\varphi(f)^2} \,\psi_n}
\end{equation*}

There will be no contribution to the sum
unless either $m=n+2$ or $m=n$ or $m=n-2$.
Now let us calculate those contributions.
To avoid the introduction of sums,
we use the adjoint identity
to transform creation operators on the right
into annihilation operators on the left.

\begin{align*}
  \innerp{\psi'_{n+2}}{\normord{\varphi(f)^2} \,\psi_n} 
  &= \tfrac{1}{2} \innerp{a(Ef) a(Ef) \psi'_{n+2}}{\psi_n} \\
  &= \begin{multlined}[t][10cm]
    \tfrac{1}{2} \sqrt{n+2} \sqrt{n+1} \int dp_1 dp_2 \, \ft{f}(p_1) \ft{f}(p_2) \int dk_1 \cdots dk_n \\
    \overline{\psi'_{n+2}(p_1,p_2,k_1,\ldots,k_n)} \, \psi_n(k_1,\ldots,k_n)
  \end{multlined} \\[1ex]
  \innerp{\psi'_{n}}{\normord{\varphi(f)^2} \,\psi_n} 
  &= \innerp{a(Ef) \psi'_{n}}{a(Ef) \psi_n} \\
  &= \begin{multlined}[t][10cm]
    \sqrt{n} \sqrt{n} \int dp_1 dp_2 \, \ft{f}(p_1) \overline{\ft{f}(p_2)} \int dk_1 \cdots dk_{n-1} \\
    \overline{\psi'_{n}(p_1,k_1,\ldots,k_{n-1})} \, \psi_n(p_2,k_1,\ldots,k_{n-1})
  \end{multlined} \\[1ex]
  \innerp{\psi'_{n-2}}{\normord{\varphi(f)^2} \,\psi_n} 
  &= \tfrac{1}{2} \innerp{\psi'_{n-2}}{a(Ef) a(Ef) \psi_n} \\
  &= \begin{multlined}[t][10cm]
    \tfrac{1}{2} \sqrt{n} \sqrt{n-1} \int dp_1 dp_2 \, \overline{\ft{f}(p_1)} \overline{\ft{f}(p_2)} \int dk_1 \cdots dk_{n-2} \\
    \overline{\psi'_{n-2}(k_1,\ldots,k_{n-2})} \psi_n(p_1,p_2,k_1,\ldots,k_{n-2})
  \end{multlined}
\end{align*}

\begin{align*}
  \innerp{\psi'_{m}}{\normord{\varphi(f)^2} \,\psi_n} 
  &= \begin{multlined}[t][10cm]
    \tfrac{1}{2} \sqrt{n+2} \sqrt{n+1} \int dp_1 dp_2 \, \ft{f}(p_1) \ft{f}(p_2) \int dk_1 \cdots dk_n \\
    \chi(p_{s+1}) \cdots \chi(p_2) \\
    \overline{\psi'_{m}\parens{k_1,\ldots,k_{n-s},p_1,\ldots,p_s}} \, \psi_n\parens{k_1,\ldots,k_{n-(2-s)},p_{s+1},\ldots,p_2}
  \end{multlined}
\end{align*}

\section{Quadratic Forms}

In a typical physics literature treatment of second quantization,
the annihilation and creation operators and the quantized field are treated as
point-dependent operator valued functions $a(p)$, $a^\dagger(p)$, $\varphi(x)$,
disregarding the fact that these may not be operators, in a strict sense, and without smearing with a test function.
Nonetheless, this notational fiction is useful, and we can uphold it with little effort by giving
the pointwise \enquote{operators} rigorous meaning as quadratic forms.

Given a point $p$ in momentum space,
we define the annihilation operator $a(p)$ with domain TODO by
\begin{equation*}
  \parens[\big]{a(p) \psi} {}_n (k_1, \ldots, k_n)
  = \sqrt{n+1} \, \psi_{n+1} (k_1, \ldots, k_n,p)
\end{equation*}
The issue arises when one looks for an adjoint to this operator.
A formal calculation based on the adjoint identity
\begin{equation}
  \label{equation:adjoint-identity}
  \innerp[\big]{\psi'}{a(p)^\dagger \psi} =
  \innerp[\big]{a(p) \psi'}{\psi}
\end{equation}
leads to
\begin{equation}
  \label{equation:creation-operator-at-point}
  \parens[\big]{a(p)^\dagger \psi} {}_n (k_1, \ldots, k_n)
  = \frac{1}{\sqrt{n}} \sum_{i=1}^n \delta(p - k_i) \, \psi_{n-1} (k_1, \ldots, \widehat{k_i}, \ldots, k_n),
\end{equation}
where the symmetrization is necessary to obtain an expression that
at least has a chance of being a $n$ Boson state.
However, it clearly is not a $L^2$ function.
Given any state $\psi'$, we can
formally calculate the inner product of $\psi'$ with~\eqref{equation:creation-operator-at-point} 
and we use the result to define the $a^\dagger(p)$
as a mapping that assigns a number to each \emph{pair} of states.
That is, we define the creation \enquote{operator} $a^\dagger(p)$
to be the quadratic form
\begin{gather*}
  a(p)^\dagger : F \times F \longrightarrow \CC \\
  \innerp[\big]{\psi'}{a(p)^\dagger \psi}
  \defequal
  \begin{multlined}[t]
    \sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} \sum_{i=1}^n
    \int_M \! d\Omega_m(k_1) \cdots \widehat{d\Omega_m(k_i)} \cdots d\Omega_m(k_n) \\
    \cdot \overline{\psi'_{n} (k_1, \ldots, \underset{i}{p}, \ldots, k_n)}
    \psi_{n-1} (k_1, \ldots, \widehat{k_i}, \ldots, k_n).
  \end{multlined}
\end{gather*}
One can verify directly that
with this definition the adjoint identity~\eqref{equation:adjoint-identity} 
holds for all $\psi,\psi' \in F$.
For completeness, we give a precise definition of quadratic form.

\begin{definition}{Quadratic Form}{}
  A \emph{quadratic form}\index{quadratic form} $q$ on a complex Hilbert space $\hilb{H}$ is a mapping
  \begin{equation*}
    q : D(q) \times D(q) \to \CC,
  \end{equation*}
  where $D(q)$ is a linear subspace of $\hilb{H}$, called the \emph{form domain}\index{form domain}\index{quadratic form!domain of a},
  such that $q$ is conjugate linear in its first argument
  and linear in its second argument (i.e.\ sesquilinear).
  We say that $q$ is \emph{densely defined}
  if $D(q)$ is dense in $\hilb{H}$.
\end{definition}

Any linear operator on a complex Hilbert space $\hilb{H}$ has an
obvious interpretation as a quadratic form on $\hilb{H}$,
and the form domain agrees with the domain of the operator.
The reverse construction is always possible for densely defined quadratic forms,
but one may obtain an operator with trivial domain.

\begin{definition}{Operator Associated to a Quadratic Form}{}
  Suppose $q$ is a densely defined quadratic form on a complex Hilbert space $\hilb{H}$.
  The linear \emph{operator associated to}\index{quadratic form!operator associated to a} $q$, denoted $\QFop{q}$,
  is defined on the domain
  \begin{equation*}
    D(\QFop{q}) = \braces{\psi \in D(q) \mid \text{the map $q(\cdot,\psi) \vcentcolon D(q) \to \CC$ is bounded}},
  \end{equation*}
  and maps $\psi \in D(\QFop{q})$ to the vector $\QFop{q}\psi$ in $\hilb{H}$ satisfying
  $q(\psi'\!,\psi) = \innerp{\psi'\!}{\QFop{q}\psi}$,
  which exists and is unique by Riesz’s Representation Theorem.
\end{definition}

We will use the symbol $\QFequal$ between quadratic forms or operators
to indicate their equality as quadratic forms.
\todo{statement about domains?}


A natural question is how the smeared operators relate to the pointwise ones.

\begin{equation*}
  a(g) \QFequal \int \overline{g(p)} a(p) \, d\Omega_m(p)
\end{equation*}

\begin{equation*}
  a^\dagger(g) \QFequal \int g(p) a^\dagger(p) \, d\Omega_m(p)
\end{equation*}
We have to explain what is meant by the integral on the right hand side.
Suppose $q(p)$ is a quadratic form on $\BosonFock{\hilb{H}}$ for each $q \in \RR^4$,
that share a common domain $D \subset D(q(p))$,
and $g$ is in $\hilb{H} = L^2(\RR^4,\Omega_m)$. Then we define
a quadratic form by
\begin{equation*}
  \parens{\int g(p) q(p) \, d\Omega_m(p)}(\psi',\psi)
  = \int g(p) \parens{q(p)}(\psi',\psi) \, d \Omega_m(p)
\end{equation*}
for all $\psi,\psi' \in D$.

\begin{equation*}
  a(p_1)^\dagger \cdots a(p_s)^\dagger a(p_{s+1}) \cdots a(p_r)
\end{equation*}
\begin{equation*}
  \innerp[\big]{\psi'}{a(p_1)^\dagger \cdots a(p_s)^\dagger a(p_{s+1}) \cdots a(p_r) \psi}
  = \innerp[\big]{a(p_1) \cdots a(p_s) \psi'}{a(p_{s+1}) \cdots a(p_r) \psi}
\end{equation*}

\section{Normal Ordering}
% The Renormalization Map?

%\blockcquote{Wick1950}{%
 %\textelp{} we then proceed to rearrange such a product so as to carry all
 %creation operators to the left of all destruction operators \textelp{}. The
 %main problem to be solved in carrying out this idea is one of algebraic
 %technique \textelp{} 
%}

The process of renormalizing a product of field operators
has the purpose of discarding infinite constants
that occur when calculating the vacuum expectation value.
\todo{present physicists way of introducing normal ordering}

Now let us extract the algebraic essence of the situation.
The objects of our calculations are the field operators $\Phi(f)$,
but it does not matter that these are realized as linear maps on Fock space.
Forming the product $\Phi(f)\Phi(g)$ might as well be done purely symbolically,
since none of what we want to do depends on this product
having the meaning of operator composition;
and similar for the other two arithmetic operations,
addition and multiplication with a complex scalar.
Thus we should calculate with abstract objects $\Phi(f)$ labeled by Hilbert space vectors $f \in \hilb{H}$.
Considering that here $\Phi$ carries no meaning, we can use the label $f$ itself to represent the object.

This leads us to consider formal expressions
\begin{equation*}
  \alpha^{(0)} e + \sum_{i} \alpha^{(1)}_i z^{(1)}_i + \sum_{j,k} \alpha^{(2)}_{j,k} z^{(2)}_j z^{(2)}_k + \cdots
\end{equation*}
where the $z^{(1)}_i,z^{(2)}_j,z^{(2)}_k,\ldots$ are in $\hilb{H}$,
the $\alpha^{(0)},\alpha^{(1)}_i,\alpha^{(2)}_{j,k},\ldots$ are complex numbers,
of which only finitely many are nonzero,
and $e$ is a special object representing an empty product of $z$'s.
To make this mathematically precise:
we are speaking of the non-commutative associative algebra over $\CC$
freely generated by the elements of $\hilb{H}$.
The unit of the algebra is $e$.

This in not quite what we want
\todo{explain need for commutation relations}
By abstract algebra, this is viable
by forming the quotient of the free algebra
with respect to the two-sided ideal
generated by all elements $zz' - z'z = i \Imag \innerp{z}{z'} \, e$,
where $z,z' \in \hilb{H}$.

\begin{definition}{Infinitesimal Weyl Algebra}{}
  Let $\hilb{H}$ be a complex Hilbert space.
  The \emph{infinitesimal Weyl algebra}\index{infinitesimal Weyl algebra} $\WeylAlg(\hilb{H})$ over $\hilb{H}$
  is the non-commutative associative algebra over $\CC$
  generated by the elements of $\hilb{H}$, with the relations
  \begin{equation*}
    zz' - z'z = i \Imag \innerp{z}{z'} \, e \qquad z,z' \in \hilb{H},
  \end{equation*}
  where $e$ is the unit of the algebra.
\end{definition}

\todo{introduce $\Phi$ as representation of $\WeylAlg$}

\begin{definition}{Annihilator and Creator}{}
  Suppose $\WeylAlg$ is the infinitesimal Weyl algebra
  over some complex Hilbert space $\hilb{H}$.
  For all $z \in \hilb{H}$,
  we define, as elements of $\WeylAlg$, the \emph{annihilator}
  \begin{equation*}
    \weylannihilator(z) = \frac{1}{\sqrt{2}} \parens{z+iz},
  \end{equation*}
  and the \emph{creator}
  \begin{equation*}
    \weylcreator(z) = \frac{1}{\sqrt{2}} \parens{z-iz}.
  \end{equation*}
\end{definition}

\begin{equation*}
  z = \frac{1}{\sqrt{2}} \parens[\big]{\weylannihilator(z) + \weylcreator(z)}
\end{equation*}

A \emph{monomial} in the Weyl algebra $\WeylAlg$ over a complex Hilbert space $\hilb{H}$ is an element of the form
$z_1 \cdots z_r \in \WeylAlg$, where $r \ge 0$ and $z_1,\ldots,z_r$ are in $\hilb{H}$.
We allow $r=0$, meaning that the unit $e$ is a monomial.
The set of all monomials in $\WeylAlg$ is denoted $\Mon(\WeylAlg)$.

\begin{definition}{Normal Ordering}{}
  Let $\hilb{H}$ be a complex Hilbert space and $\WeylAlg$ its associated infinitesimal Weyl algebra.
  The mapping $\normord{\,\,}$, defined by
  \begin{gather}
    \Mon(\WeylAlg) \longrightarrow \WeylAlg \nonumber\\
    \label{equation:normal-ordering}
    \normord{z_1 \!\cdots z_r} =
    \frac{1}{\sqrt{2^r}}
    \sum_{I \subset \braces{1,\ldots,r}} \,
    \prod_{i \in I\vphantom{\lbrace\rbrace}} \weylcreator(z_i)
    \prod_{\mathclap{j \in \braces{1,\ldots,r} \setminus I}} \weylannihilator(z_j),
  \end{gather}
  is called the \emph{normal} (or \emph{Wick}) \emph{ordering}\index{normal ordering}\index{Wick ordering} on $\hilb{H}$.
  A monomial $z_1 \cdots z_r \in \Mon(\WeylAlg)$ is said to be in \emph{normal} (or \emph{Wick}) \emph{order},
  if $\normord{z_1 \cdots z_r} = z_1 \cdots z_r$.
\end{definition}

The products in~\eqref{equation:normal-ordering} are well defined
because creators commute with creators and annihilators commute with annihilators.
Since an empty product equals, per convention, the neutral element of multiplication, which here is the unit $e$,
the formula makes sense even for $r=0$ and asserts that $\normord{e} = e$.
The cases $r=1$ and $r=2$ read
\begin{align*}
  \normord{z} &=
  \frac{1}{\sqrt{2}} \parens[\big]{\weylannihilator(z) + \weylcreator(z)} = z, \\
  \normord{z_1 z_2} &= \frac{1}{2}
  \parens[\big]{\weylannihilator(z_1) \weylannihilator(z_2) + \weylcreator(z_1) \weylannihilator(z_2)
  + \weylcreator(z_2) \weylannihilator(z_1) + \weylcreator(z_1) \weylcreator(z_2)}.
\end{align*}
This suggests that the normally ordered product $\normord{z_1 \!\cdots z_r}$
is symmetric in $z_1,\ldots,z_n$. This is in fact true, and becomes evident
if one brings~\eqref{equation:normal-ordering} into the equivalent form
\begin{gather}
  \label{equation:normal-ordering-symmetric}
  \normord{z_1 \!\cdots z_r} =
  \frac{1}{\sqrt{2^r}}
  \sum_{\sigma \in S_r}
  \sum_{s=0\vphantom{S}}^{r}
  \frac{1}{s!(r-s)!}
  \prod_{i=1\vphantom{S}}^{s} \weylcreator(z_{\sigma(i)})
  \prod_{\mathclap{j=s+1\vphantom{S}}}^{r} \weylannihilator(z_{\sigma(j)}) 
\end{gather}
by basic combinatorial arguments \todo{further explanation?}.
In~\cite{Klein1973}, the factor $\frac{1}{s!(r-s)!}$ is erroneously missing.


\begin{equation*}
  E(\normord{z_1 \!\cdots z_r}) = 0 \qquad \forall z_1,\ldots,z_r \in \hilb{H}, r \ge 1
\end{equation*}
\begin{equation*}
  E\parens[\Big]{\prod_{i=1\vphantom{S}}^{s} \weylcreator(z_i)
  \prod_{\mathclap{j=s+1\vphantom{S}}}^{r} \weylannihilator(z_j)} = 0
  \qquad \forall z_1,\ldots,z_r \in \hilb{H}, r \ge 1, 1 \le s \le r
\end{equation*}


The normal ordered product is supposed to represent the identical quantity as before ordering,
except that we have adjusted our point of reference, such that measurements yield finite results.
It is therefore \emph{physically reasonable} that the commutation relations
of the normal ordered product with the field are analogous.
As it turns out, this additional property makes the construction of normal ordering
\emph{mathematically unique}.

\begin{theorem}{Uniqueness of the Normal Order}{}
  Normal ordering is the unique mapping $N : \Mon(\WeylAlg) \to \WeylAlg$ such that
  \begin{gather*}
    E\parens[\big]{N(z_1 \!\cdots z_r)} = 0 \\
    \bracks{N(z_1 \!\cdots z_r), z'} =
    \sum_{s=1}^{r} \bracks{z_s,z'} N(z_1 \!\cdots \widehat{z_i} \cdots z_r)
  \end{gather*}
  for all $z_1,\ldots,z_r,z' \in \hilb{H}$ and all $r \ge 1$.
\end{theorem}

%\begin{theorem}{}{}
  %The normal ordering is the renormalization with respect to the normal vacuum.
%\end{theorem}

\section{Linear Differential Operators and their Formal Adjoint}

Before we turn to the problem of defining renormalized products of a quantum field and its derivatives
we must clarify what is meant mathematically by the derivative of a field.
For this, we recall that in Wightmans approach to quantum field theory,
a quantum field $\varphi$ on a spacetime manifold $M$ is modeled by an operator valued tempered distribution,
that is a mapping that assigns to each (Schwartz class) test function $f$ on $M$ an unbounded operator $\varphi(f)$
in the Fock space xxx over some Hilbert space $\hilb{H}$, such that for each fixed pair of states $\psi,\psi'$
the mapping
\begin{equation*}
  \schwartz{M} \to \CC, \quad
  f \mapsto \innerp{\psi'}{\varphi(f) \psi}
\end{equation*}
is a (scalar-valued) tempered distribution on $M$.
It is well known that tempered distributions have partial derivatives of any order.
Suppose we work with $M = \RR^d$ for simplicity,
and let $\partial_i$ denote the partial derivative with respect to the $i$-th coordinate.
Then a general \emph{linear differential operator with constant coefficients} on $M$ looks like
\begin{equation*}
  D = \sum_{\alpha} a_{\alpha} \partial^{\alpha},
\end{equation*}
where the sum runs over all multi-indices $\alpha = (\alpha_1,\ldots,\alpha_d) \in \NN^d$,
the coefficients $a_{\alpha}$ are complex numbers,
and $\partial^{\alpha} = \partial_1^{\alpha_1} \!\cdots \partial_d^{\alpha_d}$.
Then the \emph{distributional derivative} of a tempered distribution $\eta \in \tempdistrib{\RR^d}$
is defined by
\begin{equation*}
  (D\eta)(f) = \eta(D^{\dagger}f) \quad \forall f \in \mathcal{S},
\end{equation*}
where the \emph{formal adjoint} of $D$ is the linear differential operator with constant coefficients given by
\begin{equation*}
  D^\dagger = \sum_{\alpha} (-1)^{\abs{\alpha}} a_{\alpha} \partial^{\alpha}.
\end{equation*}
Here we use the notation $\abs{\alpha} = \alpha_1 + \cdots + \alpha_d$.
The functional $D \eta$ is well defined, because the Schwartz class is stable under the application of
linear differential operators with constant coefficients.
It can be shown that $D \eta$ is again a tempered distribution.
The appearance of $-1$ in $D^{\dagger}$ is justified by the adjoint identity
\begin{equation*}
  \int (Df)(x) g(x) dx = \int f(x) (D^{\dagger}g)(x) dx,
\end{equation*}
which holds for all functions $f,g \in \schwartz{\RR^d}$
and may be obtained via integration by parts.

Naturally, we now define the \emph{distributional derivative} of the field by
\begin{equation*}
  D \varphi(f) = \varphi(D^{\dagger} f) \qquad \forall f \in \schwartz{\RR^4}
\end{equation*}
As one expects, $D\varphi$ is an operator-valued tempered distribution on $M=\RR^4$.
In terms of creation and annihilation operators we have 
\begin{equation}
  \label{derivative-free-field}
  D \varphi(f) = \frac{1}{\sqrt{2}} \parens*{a(ED^{\dagger}f)^{\dagger} + a(E\overline{D^{\dagger}f})}.
\end{equation}
In Fourier space the operator $D^\dagger$ corresponds to multiplication with the polynomial
\begin{equation*}
  \ft{D}(p) \defequal \sum_{\alpha} i^{\abs{\alpha}} a_{\alpha} (+p^0)^{\alpha_0} (-p^1)^{\alpha_1} (-p^2)^{\alpha_2} (-p^3)^{\alpha_3}
\end{equation*}
If $D=\partial^{\mu}$, then $\ft{D}(p) = i @ p_{\!\mu}$, were the potential sign is concealed by lowering the index.


Let $D_1, \ldots, D_r$ be linear differential operators with constant (complex) coefficients.
\begin{gather}
  \label{equation:renormalized-product}
  \normord{D_1 \varphi(f) \cdots D_r \varphi(f)} =
  \frac{1}{\sqrt{2^r}}
  \sum_{\sigma \in S_r}
  \sum_{s=0\vphantom{S}}^{r}
  \frac{1}{s!(r-s)!}
  \prod_{i=1\vphantom{S}}^{s} a^\dagger(ED^\dagger_{\sigma(i)}f)
  \prod_{\mathclap{j=s+1\vphantom{S}}}^{r} a(E\overline{D^\dagger_{\sigma(j)}f}) 
\end{gather}

\section{Renormalized Products of the Free Field and~its~Derivatives}

For any given test function $f \in \schwartz{M}$ the renormalized product $\normord{D_1 \varphi(f) \cdots D_r \varphi(f)}$
is well defined as a Fock space operator, but the product is \emph{not} an operator-valued distribution, unless $r=1$.
This is because it has a multi-linear dependence on the test function.
Conceptually, one wishes to treat any physical quantity derived from the quantum field
on the same footing as the field itself.
One construction to obtain an operator-valued distribution,
is described in~\cite{Segal1969}, \cite{Segal1970} and \cite{Klein1973}.
The idea is to take the limit $f \to \delta_x$, where $\delta_x$ is the delta distribution supported at a point $x \in M$,
resulting in the renormalized product at the point $x$, now just a quadratic form,
which is then smeared with \emph{one} instance of $f$.
As we shall see,
this approach incurs significant technical difficulties.

\begin{lemma}{Integral Representation of the Renormalized Product}{renormalized-product-integral-representation}  
  Let $\varphi$ be the free scalar quantum field with mass parameter $m > 0$.
  Let $D_1, \ldots, D_r$ be linear differential operators with constant (complex) coefficients.
  Then, for arbitrary Schwartz functions $f \in \realschwartz{M}$ and Fock states $\psi,\psi' \in \BosonFock{L^2(X_m^+,d\Omega_m)}$,
  we have
  \begin{equation*}
    \innerp{\psi'\!}{\normord{D_1 \varphi(f) \cdots D_r \varphi(f)} \,\psi} =
    \int dp_1 \!\cdots dp_r
    \, \ft{f}(p_1) \cdots\! \ft{f}(p_r)
    \, K_{\psi'\!,\psi}(p_1,\ldots,p_r)
  \end{equation*}
  where the \enquote{integral kernel} is given by
  \begin{multline*}
    K_{\psi'\!,\psi}(p_1,\ldots,p_r) =
    \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{s=0}^{r}
    \delta_{m-s}^{n-(r-s)}
    \ \chi(p_{s+1}) \cdots \chi(p_{r})
    \ P_s(p_1,\ldots,p_r) \\
    \cdot \sqrt{m(m-1) \cdots (m-s+1)} \sqrt{n(n-1) \cdots (n-(r-s)+1)} \\
    \cdot \int dk_1 \cdots dk_{m-s} 
    \ \overline{\psi'_m(k_1,\ldots,k_{m-s},p_1,\ldots,p_s)}
    \ \psi_n(k_1,\ldots,k_{n-(r-s)},p_{s+1},\ldots,p_r)
  \end{multline*}
  \begin{equation*}
    \text{where} \quad \chi(p) = \begin{cases*}
      \overline{\ft{f}(p)} / \ft{f}(p) & if $\ft{f}(p) \ne 0$, \\
      1 & otherwise,
    \end{cases*}
  \end{equation*}
  \begin{multline*}
    \text{and} \quad P_s(p_1,\ldots,p_r) =
    \frac{1}{\sqrt{2^r}}
    \frac{1}{s!(r-s)!}
    \sum_{\sigma \in S_r}
    \ft{D}_{\sigma(1)}(p_1) \cdots \ft{D}_{\sigma(s)}(p_s) \hspace{1.5cm} \\[-1.5ex]
    \cdot \overline{\ft{D}_{\sigma(s+1)}(p_{s+1}) \cdots \ft{D}_{\sigma(r)}(p_r)}.
  \end{multline*}  
\end{lemma}

Note that $K$ has a remaining dependence on $f$ via $\chi$
even though the notation does not indicate this.
This is made explicit in the alternative integral representation
  \begin{equation}
    \label{equation:alternative-integral-representation}
    \begin{multlined}
      \innerp{\psi'\!}{\normord{D_1 \varphi(f) \cdots D_r \varphi(f)} \,\psi} =\\
      \hspace{1cm} \int dp_1 \!\cdots dp_r
      \sum_{s=0}^{r} 
      \, \ft{f}(p_1) \cdots\! \ft{f}(p_s)
      \, \overline{\ft{f}(p_{s+1}) \cdots\! \ft{f}(p_r)}
      \, \tilde{K}^s_{\psi'\!,\psi}(p_1,\ldots,p_r)
    \end{multlined}
  \end{equation}
  where
  \begin{multline*}
    \tilde{K}^s_{\psi'\!,\psi}(p_1,\ldots,p_r) =
    P_s(p_1,\ldots,p_r)
    \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
    \delta_{m-s}^{n-(r-s)} \\
    \cdot \sqrt{m(m-1) \cdots (m-s+1)} \sqrt{n(n-1) \cdots (n-(r-s)+1)} \\
    \cdot \int dk_1 \cdots dk_{m-s} 
    \ \overline{\psi'_m(k_1,\ldots,k_{m-s},p_1,\ldots,p_s)}
    \ \psi_n(k_1,\ldots,k_{n-(r-s)},p_{s+1},\ldots,p_r).
  \end{multline*}
  This will be more convenient for xxx

\begin{myproof}[lemma:renormalized-product-integral-representation]
  From equation~\eqref{equation:renormalized-product},
  applying the definition of the Fock space inner product,
  and moving all creation operators to the left hand side,
  we get
  \begin{multline*}
    \innerp{\psi'}{\normord{D_1 \varphi(f) \cdots D_r \varphi(f)} \,\psi} =
    \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
    \frac{1}{\sqrt{2^r}} \sum_{s=0}^{r} \sum_{\sigma \in S_r} \frac{1}{s!(r-s)!} \\
    \cdot \big\langle
    a(ED_{\sigma(1)}^{\dagger}f) \cdots a(ED_{\sigma(s)}^{\dagger}f) \psi_m,
    a(ED_{\sigma(s+1)}^{\dagger}f) \cdots a(ED_{\sigma(r)}^{\dagger}f) \psi_n
    \big\rangle
  \end{multline*}
  Notice that the inner product in the second line
  can only be nonzero if the particle numbers match up
  after the application of the annihilation operators in each argument,
  that is if $m-s=n-(r-s)$.
  With~\eqref{equation:multiple-annihilation-operators}
  this expression may be further expanded into
  \begin{gather*}
    \sqrt{m(m-1) \cdots (m-s+1)}
    \sqrt{n(n-1) \cdots (n-(r-s)+1)}
    \int dk_1 \cdots dk_{m-s} \\
    \int dp_1 \cdots dp_s
    \ ED_{\sigma(1)}^{\dagger}f(p_1) \cdots ED_{\sigma(s)}^{\dagger}f(p_s)
    \ \overline{\psi'_m(k_1,\ldots,k_{m-s},p_1,\ldots,p_s)} \\
    \int dp_{s+1} \cdots dp_r
    \ \overline{ED_{\sigma(s+1)}^{\dagger}f(p_{s+1}) \cdots ED_{\sigma(r)}^{\dagger}f(p_r)}
    \ \psi_n(k_1,\ldots,k_{n-(r-s)},p_{s+1},\ldots,p_r)
  \end{gather*}
  Now recall that $E$ stands for Fourier transformation (followed by restriction to the mass shell)
  and that in Fourier space the linear differential operator $D^\dagger$ corresponds to a
  multiplication with the function $\hat{D}$, so that
  \begin{equation*}
    ED_{\sigma(i)}^{\dagger}f(p_i) = \hat{D}_{\sigma(i)}(p_i) \cdot \ft{f} (p_i) 
    \qquad \forall i
  \end{equation*}
  By Fubini’s Theorem, the we may interchange the integrals with respect to the variables $p_i$
  with the $k$-integrals.
  This allows us to move all factors involving $\ft{f}$ in front of the $k$-integrals.
  Finally, we introduce the $\chi$s through the substitution $\overline{\ft{f}} = \chi \ft{f}$,
  and combine all terms depending on $\sigma$ into $P_s$.
\end{myproof}

In the special case that $D_1 = \cdots = D_r = D$ we have
\begin{equation*}
  P_s(p_1,\ldots,p_r) =
  \frac{1}{\sqrt{2^r}} \parens*{r \atop s\vphantom{y}}
  \ft{D}(p_1) \cdots \ft{D}(p_s)
  \overline{\ft{D}(p_{s+1}) \cdots \ft{D}(p_r)}.
\end{equation*}
In particular, for squares ($r=2$) we have
\begin{equation*}
  P_s(p_1,p_2) = \begin{cases}
    \tfrac{1}{2} \, \overline{\ft{D}(p_1)\ft{D}(p_2)} & s=0 \\
    \phantom{\tfrac{1}{2}} \, \overline{\ft{D}(p_1)}\ft{D}(p_2) & s=1 \\
    \tfrac{1}{2} \, \ft{D}(p_1)\ft{D}(p_2) & s=2
  \end{cases}
\end{equation*}

The following assertion is key to realizing the idea of taking the limit $f \to \delta_x$.

\begin{lemma}{H-bounds for the Integral Kernel}{integral-kernel-h-bound}
  In the setting of \cref{lemma:renormalized-product-integral-representation},
  there exist a constant $C$, and a positive integer $l$,
  such that for arbitrary test functions $f \in \schwartz{M}$
  and states $\psi,\psi' \in \Domain{H^l}$,
  the function $K_{\psi'\!,\psi}$ is integrable (that is, $L^1$)
  and satisfies the $H$-bound
  \begin{equation*}
    \norm{K_{\psi'\!,\psi}}_1 \le
    C \norm{(1+H)^l \psi'} \norm{(1+H)^l \psi}.
  \end{equation*}
  More specifically, it is sufficient to choose $l > rd + r/2$,
  where $d$ is the highest order of differentiation occurring in $D_1, \ldots, D_r$.
\end{lemma}

The Hamilton operator $H$ acts on $n$-particle states $\psi_n$ as follows:
\begin{gather*}
  H \psi_n(p_1,\ldots,p_n) = \parens[\big]{\omega(p_1) + \cdots + \omega(p_n)} \psi_n(p_1,\ldots,p_n) \\
  \shortintertext{where}
  \omega(p) = \omega(\symbfit{p}) = \sqrt{m^2 + \abs{\symbfit{p}}^2} = \sqrt{m^2 + (p^1)^2 + (p^2)^2 + (p^3)^2}.
\end{gather*}
In the following proof it will be convenient to use the abbreviation
\begin{equation*}
  \omega(p_1,\ldots,p_s) \defequal \omega(p_1) + \cdots + \omega(p_n).
\end{equation*}

\begin{myproof}[lemma:integral-kernel-h-bound]
  We have to find an estimate for
  \begin{equation*}
    \norm{K_{\psi'\!,\psi}}_1 =
    \int dp_1 \!\cdots dp_r
    \, \abs{K_{\psi'\!,\psi}(p_1,\ldots,p_r)}.
  \end{equation*}
   We apply the triangle inequalities for sums and integrals
   to the expression for $K_{\psi'\!,\psi}$ given in \cref{lemma:renormalized-product-integral-representation},
   use the fact that $\chi(p)$ has modulus one, make the estimates
   \begin{equation*}
    m(m-1) \cdots (m-s+1) \le m^r
    \quad \text{and} \quad 
    n(n-1) \cdots (n-(r-s)+1) \le n^r,
   \end{equation*}
   and finally reorder the integration with Fubini’s Theorem
   to obtain
  \begin{equation}
    \label{equation:first-estimate}
    \begin{multlined}[c]
      \norm{K_{\psi'\!,\psi}}_1 \le
      \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{s=0}^{r}
      \delta_{m-s}^{n-(r-s)} \sqrt{m^r n^r} \\
      \hspace{2.5cm} \cdot \int \!dk \int \!dp'\! \int \!dp \,
      \abs*{P_s(p',p) \, \psi'_m(k,p') \, \psi_n(k,p)},
    \end{multlined}
  \end{equation}
  where we have used the abbreviations
  \begin{align*}
    k &= (k_1,\ldots,k_{m-s})
    \quad p' = (p_1,\ldots,p_s)
    \quad p = (p_{s+1},\ldots,p_r) \\
    dk &= dk_1 \cdots dk_{m-s}
    \quad \text{and so on.}
  \end{align*}
   For following discussion we will assume $n-(r-s)=m-s$.

  Observe that $P_s(p_1,\ldots,p_r)$ is a (complex) polynomial
  in the $4r$ variables $p_i^\mu$, $i=1,\ldots,r$, $\mu=0,\ldots,3$.
  Its degree is given by
  \begin{equation*}
    \deg P_s = \sum_{i=1}^r \deg \ft{D}_i
  \end{equation*}
  that is the sum of the highest orders of differentiation
  occurring in each of the operators $D_1, \ldots, D_r$.
  There is no reason to expect arbitrary states $\psi,\psi'$ to temper fast enough
  to counteract this polynomial growth.
  Thus, the integral in~\eqref{equation:first-estimate} will not converge, in general.
  However, if $\psi$ lies in the domain of $H^a$ for some positive integer $a$,
  then we can be sure that $(1+H)^a \psi$ is square integrable, and we have
  \begin{align*}
    \psi_n(k,p) &= \parens[\big]{1+\omega(k,p)} {}^{-a} (1+H)^a \psi_n(k,p) \\
    \psi'_m(k,p') &= \parens[\big]{1+\omega(k,p')} {}^{-a} (1+H)^a \psi'_m(k,p')
  \end{align*}
  We use this to rewrite the integral part of~\eqref{equation:first-estimate} as follows:
  \begin{equation}
    \label{equation:rewritten-integral}
    \int \!dk \int \!dp'\! \int \!dp \, \abs*{F(k,p',p) \, G'(k,p') \, G(k,p)},
  \end{equation}
  where we have introduced the functions
  \begin{align*}
    F(k,p',p) &= \parens[\big]{1+\omega(k,p')} {}^{-a} \parens[\big]{1+\omega(k,p)} {}^{-a} P_s(p',p) \\
    G'(k,p') &= \sqrt{m^r} (1+H)^a \psi'_m(k,p') \\
    G(k,p) &= \sqrt{n^r} (1+H)^a \psi_n(k,p).
  \end{align*}
  Next, we derive an estimate of~\eqref{equation:rewritten-integral}.
  By Cauchy-Schwarz, we have
  \begin{equation*}
    \abs*{\int dp \, \abs{F(k,p',p)G(k,p)}}^2
    \le \int dp \abs{F(k,p',p)}^2
    \cdot \int dp \abs{G(k,p)}^2
  \end{equation*}
  and this implies
  \begin{equation}
    \label{equation:estimate1}
    \int dp' \abs*{\int \!dp \, \abs{F(k,p',p)G(k,p)}}^2
    \le \int dp \abs{G(k,p)}^2
    \cdot \int dp'\! \int dp \abs{F(k,p',p)}^2.
  \end{equation}
  Notice that the second factor is the $L^2$ norm of $F$ with its first argument held fixed:
  \begin{equation}
    \label{equation:norm}
    \norm{F(k,\cdot,\cdot)}_2^2
    = \int dp'\! \int dp \abs{F(k,p',p)}^2
  \end{equation}
  By another application of Cauchy-Schwarz, and using~\eqref{equation:estimate1} and~\eqref{equation:norm}, we obtain
  \begin{align*}
    \text{\eqref{equation:rewritten-integral}} \,
    &= \int \!dk \int \!dp' \abs{G'(k,p')} \int \!dp \, \abs*{F(k,p',p) \, G(k,p)} \\
    &\le \norm{G'}_2 \parens[\bigg]{\int dk \int dp' \abs*{\int \!dp \, \abs*{F(k,p',p)G(k,p)}}^2}^{\frac{1}{2}} \\
    &\le \norm{G'}_2 \parens[\bigg]{\int dk \, \norm{F(k,\cdot,\cdot)}_2^2 \int dp \abs{G(k,p)}^2}^{\frac{1}{2}} \\
    &\le \norm{G'}_2 \norm{G}_2 \sup_{k} \norm{F(k,\cdot,\cdot)}_2
  \end{align*}
  We claim that there exists a positive constant $C_1$ independent of $m$ and $n$ such that
  \begin{equation*}
    \norm{G}_2 \le C_1 \norm{(1+H)^{a+r/2} \psi_n}_2
  \end{equation*}
  and similarly for $G'$.
  Since $\omega$ has a positive lower bound on the mass shell,
  there exists a constant $\epsilon > 0$ independent of $n$ such that
  \begin{equation*}
    1+\omega(k,p) = 1 + \underbrace{\omega(k_1) + \cdots + \omega(k_{m-s}) + \omega(p_{s+1}) + \cdots + \omega(p_r)}_{\text{$(m-s)+(r-s)=n$ terms}} \ge n \epsilon
  \end{equation*}
  Combine this with the fact that
  $N \psi_n = n\psi_n$, where $N$ is the number operator,
  to see
  \begin{equation*}
    \norm{G}_2 = \norm{N^{r/2} (1+H)^a \psi_n}_2 \le \epsilon^{-r/2} \norm{(1+H)^{a+r/2} \psi_n}_2.
  \end{equation*}
  Now set $C_1 = \epsilon^{-r/2}$.
  The proof for $G'$ is analogous.
  In particular, we have shown that both $\norm{G}_{2}$ and $\norm{G'}_{2}$ are finite,
  provided that $\psi_n$ and $\psi'_m$ lie in the domain of $H^l$, where $l=a+r/2$.

  %$H \psi_n(k,p) = (1+\omega(k,p)) \psi_n(k,p)$ 
  %$\norm{(1+H)\psi_n}_2 \ge n \epsilon \norm{\psi_n} = \epsilon \norm{N \psi_n}$ 

  In order to determine conditions for the finiteness of the remaining factor involving $F$,
  it is desireable to have an estimate of the growth of $P_s$ in terms of $\omega(p_1),\ldots,\omega(p_r)$.
  Notice that it is sufficient to make an estimate that is valid on the support of the measure $\Omega_m$, that is, the mass shell $X_m^+$,
  since $F$ appears in an integral with respect to $p_1,\ldots,p_r$.
  For an arbitrary point $q$ on the mass shell $X_m^+$ we have
  \begin{align*}
    q^{0} &= \omega(q) \\
    \abs{q^{\mu}} &\le \omega(q) \quad \mu = 1,2,3.
  \end{align*}
  Moreover, $\omega(q)$ has a positive lower bound on $X_m^+$, so that
  for all exponents $a,b \in \NN$ with $a < b$ there
  exists a constant $c_{a,b}$ such that $\omega(q)^a \le c_{a,b}\, \omega(q)^b$.
  This allows us to make the estimate
  \begin{equation}
    \label{equation:polynomial-estimate}
    \abs{P_s(p_1,\ldots,p_r)} \le C_s \prod_{i=1}^r \omega(p_i)^{d_i} \quad \text{where}\ d_i = \deg \ft{D}_i,
  \end{equation}
  and $C_s$ is a constant independent of $m$ and $n$.
  By the Arithmetic Mean-Geometric Mean Inequality, we have
  \begin{gather}
    \sqrt[s]{\omega(p_1) \cdots \omega(p_s)} 
    \le \frac{\omega(p_1) + \cdots + \omega(p_s)}{s} 
    \le \omega(p') \le 1 + \omega(k,p'), \nonumber\\
    \shortintertext{hence}
    \label{equation:one-plus-omega-estimate1}
    \parens[\big]{1+\omega(k,p')} {}^{-a}
    \le \parens[\big]{\omega(p_1) \cdots \omega(p_s)} {}^{-a/s}, \\
    \shortintertext{and similarly}
    \label{equation:one-plus-omega-estimate2}
    \parens[\big]{1+\omega(k,p)} {}^{-a}
    \le \parens[\big]{\omega(p_1) \cdots \omega(p_{r-s})} {}^{-a/(r-s)}.
  \end{gather}
  The estimates~\eqref{equation:polynomial-estimate},~\eqref{equation:one-plus-omega-estimate1} and~\eqref{equation:one-plus-omega-estimate2} entail
  \begin{equation*}
    \abs{F(k,p',p)} \le C_s
    \prod_{i=1}^{s} \omega(p_i)^{d_i-a/s} 
    \prod_{j=s+1}^{r} \omega(p_j)^{d_j-a/(r-s)}.
  \end{equation*}
  Since the right hand side does not depend on $k$, and the $p$-variables are separated,
  the problem reduces to proving that
  \begin{equation}
    \label{equation:integral-finite}
    \int \omega(q)^{-2b} \,d\Omega(q) < \infty
  \end{equation}
  for $b$ large enough.
  Recall that $d \Omega(q) = \omega(q)^{-1} d^3 \symbfit{q}$.
  By transformation to spherical coordinates, we find that~\eqref{equation:integral-finite}
  is equivalent to
  \begin{equation*}
    \int \frac{r^2}{(m^2 + r^2)^{b+1/2}} \,dr < \infty
  \end{equation*}
  It it well known that this holds for $b > 1$.
  $a > r d$ 

  \begin{equation}
    \label{equation:intermediate-result}
    \norm{K_{\psi'\!,\psi}}_1 \le
    \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
    \sum_{s=0}^{r} \delta_{m-s}^{n-(r-s)} C_s
    \underbracket{\norm{(1+H)^l \psi'_m}_2}_{a'_m}
    \underbracket{\norm{(1+H)^l \psi_n}_2}_{a_n}
  \end{equation}
  We introduce auxiliary variables $a'_m, a_n$ as shown above, and for convenience set $a_n = 0$ whenever $n < 0$.
  Using this, we rewrite the right hand side of~\eqref{equation:intermediate-result}
  and apply the Cauchy-Schwarz Inequality for sequences as follows:
  \begin{equation*}
    \sum_{s=0}^{r} C_s \sum_{m = 0}^{\infty} a'_m \cdot a_{m+r-2s} \le
    \sum_{s=0}^{r} C_s \sqrt{\sum_{m=0}^{\infty} a'^2_m \sum_{n=0}^{\infty} a^2_n}
  \end{equation*}
  To complete the proof, observe that
  \begin{equation*}
    \norm{(1+H)^l \psi'}_2 =
    \sqrt{\sum_{m=0}^{\infty} \norm{(1+H)^l \psi'_m}_2^2} =
    \sqrt{\sum_{m=0}^{\infty} a'^2_m},
  \end{equation*}
  and similar for $\psi$, by definition of the inner product
  and because $((1+H)^l \psi')_m = (1+H)^l \psi'_m$ for all $m$.
\end{myproof}

\begin{lemma}{Renormalized Product at a Point}{}
  In the setting of \cref{lemma:renormalized-product-integral-representation},
  assume that $\psi,\psi'$ are in $\Domain{H^l}$.
  Let $x$ be any point in $M$ and let $\delta_x \in \tempdistrib{M}$ be the Dirac distribution supported in $x$.
  Then the limit
  \begin{equation*}
    \lim_{f \to \delta_x}
    \innerp{\psi'\!}{\normord{D_1 \varphi(f) \cdots D_r \varphi(f)} \,\psi}
  \end{equation*}
  exists and depends continuously on $x$.
\end{lemma}

\begin{proof}
  According to \cref{lemma:renormalized-product-integral-representation} we have
  \begin{equation*}
    \innerp{\psi'\!}{\normord{D_1 \varphi(f) \cdots D_r \varphi(f)} \,\psi}
    = \int dp_1 \!\cdots dp_r
    \, \ft{f}(p_1) \cdots\! \ft{f}(p_r)
    \, K_{\psi'\!,\psi}(p_1,\ldots,p_r)
  \end{equation*}
  The integrand is dominated by the function $\abs{K_{\psi'\!,\psi}(p_1,\ldots,p_r)}$,
  which has finite integral as it is $L^1$
  by \cref{lemma:integral-kernel-h-bound}.

  Moreover, the integrand converges pointwise to $K_{\psi'\!,\psi}(p_1,\ldots,p_r)$, since $\ft{f} \to 1$ when $f \to \delta_x$.
  \todo{With of choice of FT constants, $\ft{f} \to 1/(2\pi)^2$. Change here or change def?}

  Since the Fourier transformation of tempered distribution
  is a continuous mapping $\tempdistribnoarg \to \tempdistribnoarg$,
  we have $\ft{f} \to \FT{\delta_x}$ whenever $f \to \delta_x$ in the topology of $\tempdistribnoarg$.
  Recall that $\ft{\delta} = 1$, and thus $\FT{\delta_x}(p) = e^{ix \cdot p}$ for all $p \in M$.
  This shows that the integrand converges pointwise to
  \begin{equation*}
    \sum_{s=0}^r
    e^{ix \cdot (p_1 + \cdots + p_s)}
    e^{-ix \cdot (p_{s+1} + \cdots + p_r)}
    \tilde{K}_{\psi'\!,\psi}(p_1,\ldots,p_r)
  \end{equation*}

  The Dominated Convergence Theorem implies
\end{proof}

\begin{definition}{Renormalized Product at a Point}{}
  In the setting of \cref{lemma:renormalized-product-integral-representation},
  the mapping defined by
  \begin{gather*}
    \normord{D_1 \varphi \cdots D_r \varphi} \ \vcentcolon \ 
    M \to \QF{fock} \\
    \innerp{\psi'\!}{\normord{D_1 \varphi \cdots D_r \varphi}(x) \,\psi}
    = \lim_{f \to \delta_x}
    \innerp{\psi'\!}{\normord{D_1 \varphi(f) \cdots D_r \varphi(f)} \,\psi}
  \end{gather*}
  is called the xxx
\end{definition}


\begin{lemma}{Renormalized Product as a QF-valued distribution}{}
  In the setting of \cref{lemma:renormalized-product-integral-representation},
  \begin{equation*}
    \normord{D_1 \varphi \cdots D_r \varphi} \ \vcentcolon \ 
    \schwartz{M} \to \QF{fock}
  \end{equation*}
  \begin{equation*}
    \innerp{\psi'\!}{\normord{D_1 \varphi \cdots D_r \varphi}(f) \,\psi} =
    \int_M \!dx \ f(x) \ \innerp{\psi'\!}{\normord{D_1 \varphi \cdots D_r \varphi}(x) \,\psi}
  \end{equation*}
\end{lemma}

\begin{lemma}{TODO}{}  
  Let $\varphi$ be a free quantum field.
  Let $D_1, \ldots, D_r$ be linear differential operators with constant (complex) coefficients.
  Suppose that $l$ is a positive integer large enough to satisfy the
  Then we have for all states $\psi,\psi' \in \Domain{H^l}$
  \begin{multline*}
    \innerp{\psi'\!}{\normord{D_1 \varphi \cdots D_r \varphi}(f) \,\psi} = \\
    = \int dp_1 \!\cdots dp_r
    \sum_{s=0}^{r}
    \, \ft{f}(p_1 + \cdots + p_s - p_{s+1} - \cdots - p_r)
    \, \tilde{K}_{\psi'\!,\psi}^{s}(p_1,\ldots,p_r)
  \end{multline*}
  where
  \begin{multline*}
    \tilde{K}_{\psi'\!,\psi}^{s}(p_1,\ldots,p_r) =
    P_s(p_1,\ldots,p_r)
    \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
    \delta_{m-s}^{n-(r-s)} \\
    \cdot \sqrt{m(m-1) \cdots (m-s+1)} \sqrt{n(n-1) \cdots (n-(r-s)+1)} \\
    \cdot \int dk_1 \cdots dk_{m-s} 
    \ \overline{\psi'_m(k_1,\ldots,k_{m-s},p_1,\ldots,p_s)}
    \ \psi_n(k_1,\ldots,k_{n-(r-s)},p_{s+1},\ldots,p_r)
  \end{multline*}
  and $P_s(p_1,\ldots,p_r)$ is defined as before.
\end{lemma}

\begin{proof}
  a
\end{proof}


\section{Definition of the Stress Tensor}

In the theory of a real scalar field $\phi$ of mass $m$,
the Lagrangian density of the Klein-Gordon action is given by
\begin{equation}
  \label{lagrangian-density}
  \mathcal{L} = \frac{1}{2} \parens{\partial^{\mu} \phi \partial_{\mu} \phi - m^2 \phi^2} 
\end{equation}
and the \emph{canonical stress-energy tensor} is defined by
\begin{equation*}
  T^{\mu}_{\nu} = \frac{\partial \mathcal{L}}{\partial(\partial_{\mu} \phi)} \partial_{\nu} \phi - \delta^{\mu}_{\nu} \mathcal{L}
\end{equation*}
Raising the index $\nu$ and inserting \cref{lagrangian-density} yields
\begin{equation*}
  T^{\mu\nu} = \partial^{\mu}\phi \partial^{\nu}\phi + \frac{1}{2} \eta^{\mu\nu} \parens*{m^2 \phi^2 - \partial_{\lambda}\phi \partial^{\lambda}\phi} 
\end{equation*}
The \emph{energy density}:
\begin{equation*}
  \energydensity = T^{00} = \frac{1}{2} \parens*{\sum_{\mu=0}^{3} (\partial^{\mu}\phi)^2  + m^2 \phi^2} 
\end{equation*}
The discussion in the previous section enables us to define
the \emph{renormalized stress-energy tensor} of a free scalar field $\varphi$ by
\begin{equation*}
  T^{\mu\nu} = \normord{\partial^{\mu}\varphi \partial^{\nu}\varphi + \frac{1}{2} \eta^{\mu\nu} \parens*{m^2 \varphi^2 - \partial_{\lambda}\varphi \partial^{\lambda}\varphi}}
\end{equation*}
and this is a quadratic form.
In particular, the energy density is
\begin{equation*}
  \energydensity  = \frac{1}{2} \sum_{\mu=0}^{3} \normord{(\partial^{\mu}\varphi)^2}  + \frac{1}{2} m^2 \normord{\varphi^2}
\end{equation*}

\begin{multline*}
  \innerp{\psi'\!}{\energydensity(f) \,\psi} = \\
  = \int dp_1 dp_2
  \parens{p_1^{\mu} p_2^{\mu} + m^2} 
  \sum_{s=0}^{r} (-1)^{s+1}
  \, \ft{f}(p_1 + \cdots + p_s - p_{s+1} - \cdots - p_r)
  \, L_{\psi'\!,\psi}^{s}(p_1,\ldots,p_r)
\end{multline*}
where
\begin{multline*}
  L_{\psi'\!,\psi}^{s}(p_1,\ldots,p_r) =
  \sum_{m=0}^{\infty} \sum_{n=0}^{\infty}
  \delta_{m-s}^{n-(r-s)} \\
  \cdot \sqrt{m(m-1) \cdots (m-s+1)} \sqrt{n(n-1) \cdots (n-(r-s)+1)} \\
  \cdot \int dk_1 \cdots dk_{m-s} 
  \ \overline{\psi'_m(k_1,\ldots,k_{m-s},p_1,\ldots,p_s)}
  \ \psi_n(k_1,\ldots,k_{n-(r-s)},p_{s+1},\ldots,p_r)
\end{multline*}

\begin{theorem}{TODO}{}  
  Let $\varphi$ be a free quantum field.
  Let $D_1, \ldots, D_r$ be linear differential operators with constant (complex) coefficients.
  Then we have for all test functions $f \in \schwartz{M}$
  \begin{multline*}
    \normord{D_1 \varphi \cdots D_r \varphi}(f) \QFequal \int dp_1 \!\cdots dp_r \sum_{s=0}^{r}
    P_s(p_1,\ldots,p_r) \, \ft{f}(p_1 + \cdots + p_s - p_{s+1} - \cdots - p_r) \\
    \cdot a^\dagger(p_1) \cdots a^\dagger(p_s) a(p_{s+1}) \cdots a(p_r) 
  \end{multline*}
  as quadratic forms on $\Domain{H^l}$, where
  \begin{multline*}
    \quad P_s(p_1,\ldots,p_r) =
    \frac{1}{\sqrt{2^r}}
    \frac{1}{s!(r-s)!}
    \sum_{\sigma \in S_r}
    \ft{D}_{\sigma(1)}(p_1) \cdots \ft{D}_{\sigma(s)}(p_s) \hspace{1.5cm} \\[-1.5ex]
    \cdot \overline{\ft{D}_{\sigma(s+1)}(p_{s+1}) \cdots \ft{D}_{\sigma(r)}(p_r)}.
  \end{multline*}  
\end{theorem}

\begin{definition}{}{}
  \begin{multline*}
    \energydensity(f) \QFequal \frac{1}{4} \int dp dp' (p \cdot p' + m^2)
    \Big\lbrack \ft{f}(p+p') a(p) a(p') + {}\\
    + 2\ft{f}(p-p') a^\dagger(p) a(p') + \ft{f}(-p-p') a^\dagger(p) a^\dagger(p') \Big\rbrack
  \end{multline*}
\end{definition}

\begin{equation*}
  \bar{p} := \eta p = (p^0,-\symbfit{p}) 
\end{equation*}

\begin{proposition}{}{}
  \begin{multline*}
    \innerp{\psi'}{\energydensity(f) \psi} =
    \frac{1}{4} \int dp dp'
    (\bar{p} \cdot p' + m^2)
    \bracks[\big]{2 \ft{f}(p - p') L^1_{\psi'\!,\psi}(p,p')} \\
    + (-\bar{p} \cdot p' + m^2)
    \bracks[\big]{\ft{f}(- p - p') L^0_{\psi'\!,\psi}(p,p') + \ft{f}(p + p') L^2_{\psi'\!,\psi}(p,p')} 
  \end{multline*}
\end{proposition}

\begin{proposition}{}{}
  \begin{multline*}
    \energydensity(f) \QFequal \frac{1}{4} \int dp dp'
    (m^2 + \bar{p} \cdot p')
    \bracks[\Big]{2\ft{f}(p-p') a^\dagger(p) a(p')} \\
    + (m^2 - \bar{p} \cdot p')
    \bracks[\Big]{\ft{f}(p+p') a(p) a(p') + \ft{f}(-p-p') a^\dagger(p) a^\dagger(p')} 
  \end{multline*}
\end{proposition}

\begin{proposition}{}{}
  The Fock vacuum $\FockVacuum$ lies in the domain of $\energydensity(f)\QFop{}$
  for all test functions $f \in \schwartz{M}$
  and $\energydensity(f)\QFop{}\FockVacuum$ is the vector $\psi$ defined by
  \begin{equation*}
    \psi_2(p,p') = \frac{\sqrt{2}}{4} (m^2 - \bar{p} \cdot p') \ft{f}(-p-p')
  \end{equation*}
  and $\psi_n \equiv 0$ for $n \ne 2$.
\end{proposition}

\begin{equation*}
  \energydensity(f) \Omega = ?
\end{equation*}

\section{Essential Selfadjointness of Renormalized Products}

\begin{lemma}{H-Bounds for the Renormalized Product}{}
  \begin{equation*}
    \abs{\innerp{\psi'\!}{\normord{D_1 \varphi \cdots D_r \varphi}(f)\psi}} \le
    C \norm{(I+H)^l \psi} \norm{(I+H)^l \psi'}
  \end{equation*}
\end{lemma}

\begin{proof}
  This proof is nearly identical to that of \cref{lemma:integral-kernel-h-bound}
  and we will only cover the differences.
  \begin{equation*}
    \begin{multlined}[c]
    \abs{\innerp{\psi'\!}{\normord{D_1 \varphi \cdots D_r \varphi}(f)\psi}} \le
      \sum_{m=0}^{\infty} \sum_{n=0}^{\infty} \sum_{s=0}^{r}
      \delta_{m-s}^{n-(r-s)} \\
      \hspace{2.5cm} \cdot
    \int \!dk \int \!dp'\! \int \!dp \, \abs*{F(k,p',p) \, G'(k,p') \, G(k,p)},
    \end{multlined}
  \end{equation*}
  where
  \begin{multline}
    F(k,p',p) = \parens[\big]{1+\omega(k,p')} {}^{-a} \parens[\big]{1+\omega(k,p)} {}^{-a} P_s(p',p) \\
    \cdot \ft{f}(p_1 + \cdots + p_s - p_{s+1} - \cdots - p_r)
  \end{multline}
  and $G$ and $G'$ are defined as before.
  All we have to do, is verifying that
  \begin{equation*}
    \sup_k \norm{F(k,\cdot,\cdot)}_2 < \infty
  \end{equation*}
  for a sufficiently large integer $a$.
  Then we obtain the desired $H$-bound with $l=a+r/2$.

  Recall that the Schwartz class is preserved by Fourier transform, translation and multiplication with polynomials.
  Moreover, it is well known that Schwartz functions are square-integrable with respect to the Lorentz invariant measure on the mass shell.
  Hence,
  \begin{equation*}
    \int dp_1 \abs{\ft{f}(p_1 + \cdots + p_s - p_{s+1} - \cdots - p_r)}^2
  \end{equation*}
  is bounded by a constant independent of $p_2,\ldots,p_r$.
\end{proof}

\section{Covariance}

\begin{equation*}
  f_g(x) \defequal f(g^{-1} x) \qquad
  x \in M, \quad g \in \ProperOrthochronousPoincareGroup.
\end{equation*}

\begin{theorem}{Covariance}{covariance-renormalized-product}
  \begin{equation*}
    U(g) \,\normord{D_1 \varphi \cdots D_r \varphi}(f)\, U(g)^{-1}
    = \normord{D_1 \varphi \cdots D_r \varphi}(f_g)
  \end{equation*}
\end{theorem}

\chapterbib
\cleardoublepage

% vim: syntax=mytex