summaryrefslogtreecommitdiffstats
path: root/convolution.tex
blob: eee6e168ea2519670889d14f9ffc1f2e0df84d39 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
\chapter{A Convolution Formula for Vector-Valued Tempered Distributions}
\label{chapter:convolution}
\blockcquote{Bisognano1975}{%
  The extension to vector-valued tempered distributions is trivial.
}
Recall that the class $\SchwartzFunctions{\RR^n}$ of complex-valued Schwartz functions on $\RR^n$
is closed under convolution, a operation that assigns to functions $f$ and $g$ a third one, $f * g$,
given by
\begin{equation*}
  (f*g)(x) = \int f(x-y) g(y) \, dy
  \qquad x \in \RR^n.
\end{equation*}
\begin{definition}{Convolution of a Distribution with a Test Function}{convolution-distribution-test-function}
  Let $u \in \TemperedDistributions{\RR^n}$ be a tempered distribution and
  let $f \in \SchwartzFunctions{\RR^n}$ be a Schwartz test function.
  Then the \emph{convolution} of $u$ with $f$ is
  the tempered distribution $u * f \in \TemperedDistributions{\RR^n}$ defined by
  \begin{equation*}
    (u * f)(g) \defequal u(\tilde{f} * g) \qquad g \in \SchwartzFunctions{\RR^n},
  \end{equation*}
  where $\tilde{f}(x) = f(-x)$ for all $x \in \RR^n$.
\end{definition}
The motivation and justification for this definition is provided by the adjoint identity
\begin{equation*}
  \int (h * f)(x) \, g(x) \, dx =
  \int h(x) \, (\tilde{f} * g)(x) \, dx
\end{equation*}
holding for all $f,g,h \in \SchwartzFunctions{\RR^n}$.

It is well-known that the convolution can be expressed by the integral
\begin{equation*}
  (u * f)(g) = \int u(\tau_x \tilde{f}@@) g(x) \, dx
\end{equation*}
emphasizing its character of a smoothing operation.
The purpose of this appendix is to state and prove
a vector-valued version of this formula.

We proceed to develop a generalization of the Bochner integral
for functions valued in a separable Fréchet space,
as this will facilitate our proof of the convolution formula.

We consider a $\sigma$-finite measure space $(X,\SigmaAlgebra{A},\mu)$,
a separable Fréchet space $Y$ (over $\CC$) and the task is
to define the integral of functions $f \vcentcolon X \to Y$.
Recall that a measure space is said to be \emph{$\sigma$-finite}
if it can be exhausted by a countable number of measurable subsets of finite measure.
By \emph{Fréchet space} we mean a complete Hausdorff locally convex (topological vector) space
which possesses countable neighborhood bases.
We will make use of a countable family $P@@$ of seminorms that generates the topology of $@@Y$.
A topological space is called \emph{separable} if it contains a countable dense subset.

A function $f \vcentcolon X \to Y$ will be called \emph{simple}
if it is of the form $\sum_{i=1}^n \chi_{A_i} y_i$
where $n \in \NN$, $A_i \in \SigmaAlgebra{A}$ with $\mu(A_i) < \infty$, and $y_i \in Y$.
Naturally, the \emph{integral} of $f$ is defined to be the vector $\int f = \sum_{i=1}^n \mu(A_i) y_i \in Y$.
We say that a function $f \vcentcolon X \to Y$ is \emph{strongly measurable}
if it is the $\mu$-almost everywhere pointwise limit of simple functions.

\begin{definition}{Generalized Bochner Integral}{}
  Suppose $(X,\SigmaAlgebra{A},\mu)$ is a $\sigma$-finite measure space,
  and $Y@@$ is a separable Fréchet space
  whose topology is generated by a family $P@@$ of seminorms.
A strongly measurable function $f \vcentcolon X \to Y$ is called \emph{(generalized Bochner) integrable}
if there exists a sequence $(f_n)$ of simple functions such that
\begin{equation}
  \label{equation:bochner-integrable}
  \lim_{n \to \infty} \int_X p \circ (f_n - f) \, d\mu = 0
  \qquad \forall p \in P.
\end{equation}
In this case, the \emph{(generalized Bochner) integral} of $f$ is defined by
\begin{equation}
  \label{equation:bochner-integral}
  \int_X f \ d\mu \defequal
  \lim_{n \to \infty} \int_X f_n \, d\mu.
\end{equation}
\end{definition}
This definition needs justification.
First, for the integral in~\eqref{equation:bochner-integrable} to be meaningful,
the functions $p \circ (f_n - f)$ must be $\mu$-measurable.
Since $f$ is strongly measurable, there exists simple functions $s_k$ such that $f (x) = \lim_{k \to \infty} s_k(x)$ for almost all $x \in X$.
The continuity of $p$ implies that $p \circ (f_n - f)$ is the almost everywhere limit simple scalar functions, namely $p \circ (f_n - s_k)$,
and as such must be measurable.
%We will defer this question for now.
Second, we have to verify that the limit in~\eqref{equation:bochner-integral} exists
and is independent of the particular sequence $(f_n)$.
Remember that the sets $U_{F,\epsilon} = \braces{y \in Y \vcentcolon p(y) < \epsilon \forall p \in F}$,
where $F \subset P$ is finite and $\epsilon > 0$,
form a neighborhood basis for $0 \in Y$.
Consider any such $U_{F,\epsilon}$.
Then, for all $p \in F$ and $m,n \in \NN$
\begin{equation*}
  p \parens*{\smallint f_n - \smallint f_m}
  %= p \parens*{\smallint (f_n - f_m)}
  \le \smallint p \circ (f_n - f_m)
  \le \smallint p \circ (f - f_n) +  \smallint p \circ (f - f_m).
\end{equation*}
By~\eqref{equation:bochner-integrable} there exists $N_p \in \NN$ such that
$p \parens*{\int f_n - \int f_m} < \epsilon$ for all $m,n \ge N_p$.
If we set $N = \max \braces{N_p \vcentcolon p \in F}$, then $\int f_n - \int f_m \in U_{F,\epsilon}$ for all $m,n \ge N$.
This shows that $(\int f_n)$ is a Cauchy sequence in the topological vector space $Y$.
Now the existence of a limit point follows from the completeness of $Y$.
It is unique because the topology is Hausdorff.


\begin{theorem}{Generalized Bochner Integrability Criterion}{generalized-bochner}
  Suppose $X$ is a $\sigma$-finite measure space,
  and $Y@@$ is a separable Fréchet space
  whose topology is generated by a countable family $P@@$ of seminorms.
  A function $f \vcentcolon X \to Y@@$ is generalized Bochner integrable if and only if it is strongly measurable and
  \begin{equation*}
    \int_X p \circ f \ d\mu < \infty
    \qquad \forall p \in P.
  \end{equation*}
\end{theorem}

\begin{proof}
  Since $X$ is $\sigma$-finite,
  $X = \bigcup_{m=1}^{\infty} X_m$ with $\mu(X_m) < \infty$ and $X_m \subset X_{m+1}$.
  Clearly, $f$ is the pointwise limit of
  the functions $f_m = f \chi_{X_m}$, as $m \to \infty$.
  Let $(p_i)_{i \in \NN}$ be an enumeration of the countable family $P$ of seminorms
  generating the locally convex topology on $Y$.
  Since $Y$ is separable,
  there is a dense sequence $(y_j)_{j \in \NN}$ of vectors in $Y$.
  For $n,j \in \NN$ let
  \begin{gather*}
    C_{nj} = y_j + U_{\braces{p_1, \ldots, p_n},1/n}
    = \braces[\big]{y \in Y \vcentcolon p_i(y - y_j) \le \tfrac{1}{n} \forall i=1,\ldots,n} \\
    B_{nj} = f^{-1} C_{nj} \qquad
    A_{nj} = B_{nj} \setminus \bigcup_{k=1}^{j-1} B_{nk}
  \end{gather*}
  Observe that for each fixed $n$ the sets $C_{nj}$ cover $Y$,
  the sets $B_{nj}$ cover $X$ and
  the sets $A_{nj}$ partition $X$.
  Moreover, the sets $B_{nj}$, and consequently $A_{nj}$, are $\mu$-measurable
  because the functions $x \mapsto p_i \parens[\big]{f(x) - y_j}$ are $\mu$-measurable.
  Then, the functions
  \begin{equation*}
    f_{mn} = \sum_{j=1}^{\infty} \chi_{X_m \cap A_{nj}} y_j
  \end{equation*}
  satisfy $p_i(f(x) - f_{mn}(x)) \le \frac{1}{n}$ for all $x \in X$ when $i \le n$.
  Hence, $p_i \circ f_{mn} \le p_i \circ f + \frac{1}{n}$.
  Since $f_{mn}$ is supported in $X_m$, a set of finite measure, and $\int p_i \circ f < \infty$,
  we conclude $\int p_i \circ f_{mn} < \infty$ for all $i \le n$.
  For each $(m,n) \in \NN^2$ choose $J(m,n)$ so large that
  \begin{equation*}
    \int_{\bigcup_{j=J(m,n)+1}^{\infty} X_m \cap A_{nj}} p_i \circ f_{mn} < \frac{\mu(X_m)}{n}
    \qquad \forall i=1,\ldots,n.
  \end{equation*}
  The functions
  \begin{equation*}
    s_{mn} = \sum_{j=1}^{J(m,n)} \chi_{X_m \cap A_{nj}} y_j
  \end{equation*}
  are simple and satisfy
  \begin{equation*}
    \int p_i \circ (f_m - s_{mn})
    \le \int p_i \circ (f_m - f_{mn}) + \int p_i \circ (f_{mn} - s_{mn})
    < \frac{2\mu(X_m)}{n}
  \end{equation*}
  for $n \ge i$.
  It follows that
  \begin{equation*}
    \lim_{n \to \infty} \int p_i \circ (f_m - s_{mn}) = 0
    \qquad \forall i \in \NN.
  \end{equation*}
  For each $m \in \NN$ choose $N(m)$ so large that
  \begin{equation*}
    \int p_i \circ (f_m - s_{mN(m)}) < \frac{1}{m} 
    \qquad \forall i=1,\ldots,m.
  \end{equation*}
  and therefore
  \begin{equation*}
    \int p_i \circ (f - s_{m N(m)})
    \le \frac{1}{m} + \int p_i \circ (f - f_m) 
  \end{equation*}
  by the triangle inequality.
  %This implies
  %\begin{equation*}
    %\lim_{n \to \infty} \int p_i \circ (f_m - s_{mN(m)}) = 0
    %\qquad \forall i \in \NN.
  %\end{equation*}
  For each $i \in \NN$ the increasing sequence $(p_i \circ f_{m})_m$ of positive real-valued measurable functions
  converges pointwise to the function $p_i \circ f$,
  which is by hypothesis is integrable.
  By Dominated Convergence, $\int p_i \circ (f-f_m) \to  0$, as $m \to \infty$.
  \begin{equation*}
    \lim_{m \to \infty} \int p_i \circ (f - s_{m N(m)}) = 0
    \qquad \forall i \in \NN.
  \end{equation*}
  This proves that $f$ is generalized Bochner integrable.
\end{proof}

\begin{theorem}{}{integral-commutes-with-operator}
  Suppose $X$ is a $\sigma$-finite measure space.
  Let $Y$ and $Z$ be separable Fréchet spaces,
  and let $T \vcentcolon Y \to Z$ be a continuous linear operator.
  If $f \vcentcolon X \to Y$ is generalized Bochner integrable,
  then $T \circ f \vcentcolon X \to Z$ is generalized Bochner integrable, and
  \begin{equation*}
    \int T \circ f =
    T \! \int \! f.
  \end{equation*}
\end{theorem}

\begin{proof}
  Clearly, the composition $T \circ f$ is strongly measurable
  because $T$ is continuous and $f$ is strongly measurable.
  Suppose that the locally convex topologies on $Y$ and $Z$
  are generated by the seminorm families $P$ and $Q$, respectively.
  If $q \in Q$, then the fact that $T$ is continuous and linear implies that
  there exists a finite subset $F \subset P$ and a constant $M \ge 0$
  such that $q \circ T \le M \max_{p \in F} p$.
  If $(f_n)$ is a sequence of simple functions such that $\int p \circ (f - f_n) \to 0$, 
  then $\int q \circ T \circ (f-f_n) \to 0$.
  This shows that $T \circ f$ is generalized Bochner integrable, and
  \begin{equation*}
    \int T \circ f = \lim_{n \to \infty} \int T \circ f_n
    = T \lim_{n \to \infty} \int f_n = T \int f.\qedhere
  \end{equation*}
  %By \cref{theorem:generalized-bochner},
  %it follows that $\int q \circ T \circ f < \infty$,
\end{proof}

We now return to tempered distributions.
Denote by $\TestFunctions{\RR^n}$  the vector space of all functions $f \vcentcolon \RR^n \to \CC$
such that the derivatives $\partial^{\alpha} f$ exist and are continuous for all multi-indices $\alpha \in \NN^n$.
Recall that the space $\SchwartzFunctions{\RR^n}$ of \emph{Schwartz functions} is defined to be the vector space
\begin{equation*}
  \SchwartzFunctions{\RR^n,X} \defequal \braces{f \in \TestFunctions{\RR^n} \vcentcolon \norm{f}_{\alpha,\beta} < \infty \ \forall \alpha,\beta \in \NN^n}
\end{equation*}
equipped with the locally convex topology induced by the family of seminorms
\begin{equation*}
  \norm{f}_{\alpha,\beta} = \sup_{x \in \RR^n} \abs{x^{\alpha}} \abs{\partial^{\beta} f(x)}.
\end{equation*}
It is well known that the Schwartz space is a separable Fréchet space.
Now let $X$ be any separable Fréchet space.
We define the space $\TemperedDistributions{\RR^n\!,X}$ of \emph{$X$-valued tempered distributions} to be the vector space
\begin{equation*}
  \TemperedDistributions{\RR^n\!,X} \defequal \ContinousLinearOperators[\big]{\SchwartzFunctions{\RR^n},X}.
\end{equation*}
of all continuous linear operators $\SchwartzFunctions{\RR^n} \to X$
equipped with the bounded convergence topology.
The convolution of a $X$-valued tempered distribution $v$ with a Schwartz function $f$
is defined in the same way as in \cref{definition:convolution-distribution-test-function}, that is by
  \begin{equation*}
    (v * f)(g) \defequal v(\tilde{f} * g) \qquad g \in \SchwartzFunctions{\RR^n}.
  \end{equation*}

\begin{proposition}{Vector-Valued Convolution Formula}{vector-valued-convolution-formula}
  Let $v \in \TemperedDistributions{\RR^n\!,X}$ be a tempered distribution with values in a separable Fréchet space $X$, and
  let $f \in \SchwartzFunctions{\RR^n}$ be a Schwartz test function. Then one has
  \begin{equation*}
    (v * f)(g) = \int v(\tau_x \tilde{f}@@) g(x) \, dx \qquad g \in \SchwartzFunctions{\RR^n}.
  \end{equation*}
\end{proposition}

\begin{proof}
  We fix a Schwartz function $g$, and consider the finite measure $\mu = \abs{g} \lambda$ on $\RR^n$,
  where $\lambda(x) = dx$ is the Lebesgue measure.
  We show that the mapping $x \mapsto \tau_x \tilde{f}$ is a generalized Bochner $\mu$-integrable function $\RR^n \to \SchwartzFunctions{\RR^n}$
  using \cref{theorem:generalized-bochner}.
  For all $\alpha,\beta \in \NN^n$ we see by substituting $x+y$ for $y$ that
  \begin{equation*}
    \norm{\tau_x \tilde{f}}_{\alpha,\beta} =
    \sup_{y} \abs{y^{\alpha} \partial^{\beta} (\tau_x \tilde{f})(y)} =
    \sup_{y} \abs{(x+y)^{\alpha} \partial^{\beta} \tilde{f}(y)}.
  \end{equation*}
  There exists constants $c_{\gamma \delta}$ with
  $\abs{(x+y)^{\alpha}} \le \sum_{\gamma + \delta = \alpha} c_{\gamma \delta} \abs{x^{\gamma} y^{\delta}}$,
  and it follows that
  \begin{equation*}
    \int \norm{\tau_x \tilde{f}}_{\alpha,\beta} \, d \mu(x) 
    \le \sum_{\gamma + \delta = \alpha} c_{\gamma \delta} \norm{\tilde{f}}_{\delta,\beta} \int \abs{x^{\gamma}} g(x) \, dx < \infty 
  \end{equation*}
  because $g$ is Schwartz class.
  Hence, $x \mapsto \tau_x \tilde{f}$ defines an integrable function.
  
  The mapping $v \vcentcolon \SchwartzFunctions{\RR^n} \to X$ is linear and continuous by definition.
  By \cref{theorem:integral-commutes-with-operator},
  the composite mapping $x \mapsto v(\tau_x \tilde{f})$ is a $\mu$-integrable function $\RR^n \to X$, and
  \begin{equation}
    \label{equation:general-bochner-appears}
    \int v(\tau_x \tilde{f}) \, d\mu(x) = v \parens[\bigg]{\int \tau_x \tilde{f} \, d\mu(x)}
  \end{equation}
  For every fixed $y \in \RR^4$ the evaluation mapping $\ev_{\! @@y} \vcentcolon \SchwartzFunctions{\RR^4} \to \CC$, $h \mapsto h(y)$, clearly is continuous.
  A second invocation of \cref{theorem:integral-commutes-with-operator} delivers
  \begin{equation*}
    \ev_{\! @@y} \parens[\bigg]{\int \tau_x \tilde{f} \, d\mu(x)} =
    \int \ev_{\! @@y}(\tau_x \tilde{f}) \, d\mu(x) =
    \int \tilde{f}(y-x) g(x) \, dx =
    (\tilde{f} * g)(y) 
  \end{equation*}
  and the proof is complete.
\end{proof}

Let us point out that even in the special case that $X$ is a Banach space
the integral on the right hand side of~\eqref{equation:general-bochner-appears}
only has meaning as a generalized Bochner integral,
since the integrand takes values in $\SchwartzFunctions{\RR^n}$,
which is not a Banach space.
We could not have performed this step with the ordinary Bochner integral.

%\nomenclature[B]{$\BoundedLinearOperators{X,Y}$}{bounded linear operators from $X$ to $Y$\nomnorefpage}