summaryrefslogtreecommitdiffstats
path: root/pages/complex-analysis
diff options
context:
space:
mode:
Diffstat (limited to 'pages/complex-analysis')
-rw-r--r--pages/complex-analysis/index.md3
-rw-r--r--pages/complex-analysis/one-complex-variable/basics.md20
-rw-r--r--pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md75
-rw-r--r--pages/complex-analysis/one-complex-variable/cauchys-theorem.md45
-rw-r--r--pages/complex-analysis/one-complex-variable/index.md1
-rw-r--r--pages/complex-analysis/one-complex-variable/power-series.md76
-rw-r--r--pages/complex-analysis/one-complex-variable/the-calculus-of-residues.md36
-rw-r--r--pages/complex-analysis/several-complex-variables/edge-of-the-wedge.md8
-rw-r--r--pages/complex-analysis/several-complex-variables/index.md1
-rw-r--r--pages/complex-analysis/weak-and-strong-analyticity.md7
10 files changed, 115 insertions, 157 deletions
diff --git a/pages/complex-analysis/index.md b/pages/complex-analysis/index.md
index d07109e..60c8ed2 100644
--- a/pages/complex-analysis/index.md
+++ b/pages/complex-analysis/index.md
@@ -1,8 +1,7 @@
---
title: Complex Analysis
-nav_order: 2
+nav_order: 3
has_children: true
-# cspell:words
---
# {{ page.title }}
diff --git a/pages/complex-analysis/one-complex-variable/basics.md b/pages/complex-analysis/one-complex-variable/basics.md
index b30d18c..bbbbd30 100644
--- a/pages/complex-analysis/one-complex-variable/basics.md
+++ b/pages/complex-analysis/one-complex-variable/basics.md
@@ -3,21 +3,19 @@ title: Basics
parent: One Complex Variable
grand_parent: Complex Analysis
nav_order: 1
-# cspell:words
---
# {{ page.title }}
-{: .theorem }
-> {: #holomorphic-function-is-constant-if-derivative-vanishes }
->
-> If the derivative of a holomorphic function vanishes
-> throughout a connected open subset of the complex plane,
-> then it must be constant on that set.
->
-> More generally, if the derivative of a holomorphic function vanishes
-> throughout an open subset of the complex plane,
-> then it must be constant on any connected component of that set.
+{% theorem %}
+If the derivative of a holomorphic function vanishes
+throughout a connected open subset of the complex plane,
+then it must be constant on that set.
+
+More generally, if the derivative of a holomorphic function vanishes
+throughout an open subset of the complex plane,
+then it must be constant on any connected component of that set.
+{% endtheorem %}
{% proof %}
{% endproof %}
diff --git a/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md b/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md
index ccdd0ea..3cf81f7 100644
--- a/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md
+++ b/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md
@@ -3,39 +3,33 @@ title: Cauchy's Integral Formula
parent: One Complex Variable
grand_parent: Complex Analysis
nav_order: 3
-# cspell:words
---
# {{ page.title }}
-{: .theorem-title }
-> {{ page.title }}
->
-> Let $f : G \to \CC$ be a function holomorphic in an open subset $G \subset \CC$.
-> Let $\gamma$ be a contour in $G$ such that the interior of $\gamma$ is contained in $G$.
-> Then for any point $a$ in the interior of $\gamma$,
->
-> $$
-> f(a) = \frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} \, dz.
-> $$
-> {: .katex-display .mb-0 }
+{% theorem * Cauchy's Integral Formula %}
+Let $f : G \to \CC$ be a function holomorphic in an open subset $G \subset \CC$.
+Let $\gamma$ be a contour in $G$ such that the interior of $\gamma$ is contained in $G$.
+Then for any point $a$ in the interior of $\gamma$,
+
+$$
+f(a) = \frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} \, dz.
+$$
+{% endtheorem %}
{% proof %}
{% endproof %}
-{: .theorem-title }
-> {{ page.title }} (Generalization)
-> {: #cauchys-integral-formula-generalized }
->
-> Let $f : G \to \CC$ be a function holomorphic in an open subset $G \subset \CC$.
-> Then the $n$th derivative $f^{(n)}$ exists for every $n \in \NN$.
-> If $\gamma$ is a contour in $G$ such that the interior of $\gamma$ is contained in $G$,
-> then for any point $a$ in the interior of $\gamma$,
->
-> $$
-> f^{(n)} (a) = \frac{n!}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} \, dz.
-> $$
-> {: .katex-display .mb-0 }
+{% theorem * Cauchy's Integral Formula (Generalization) %}
+Let $f : G \to \CC$ be a function holomorphic in an open subset $G \subset \CC$.
+Then the $n$th derivative $f^{(n)}$ exists for every $n \in \NN$.
+If $\gamma$ is a contour in $G$ such that the interior of $\gamma$ is contained in $G$,
+then for any point $a$ in the interior of $\gamma$,
+
+$$
+f^{(n)} (a) = \frac{n!}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} \, dz.
+$$
+{% endtheorem %}
{% proof %}
{% endproof %}
@@ -50,20 +44,17 @@ and is often used to compute the integral.
## Many Consequences
-{: .theorem-title }
-> Cauchy's Estimate
-> {: #cauchys-estimate }
->
-> Let $f$ be holomorphic on an open set containing the disc with center $a$ and radius $r>0$.
-> Then
->
-> $$
-> \norm{f^{(n)}(a)} \le \frac{n!}{r^n} \sup_{\abs{z-a} = r} \norm{f(z)} \qquad \forall n \in \NN.
-> $$
-> {: .katex-display .mb-0 }
+{% theorem * Cauchy's Estimate %}
+Let $f$ be holomorphic on an open set containing the disc with center $a$ and radius $r>0$.
+Then
+
+$$
+\norm{f^{(n)}(a)} \le \frac{n!}{r^n} \sup_{\abs{z-a} = r} \norm{f(z)} \qquad \forall n \in \NN.
+$$
+{% endtheorem %}
{% proof %}
-From [{{ page.title }}](#cauchys-integral-formula-generalized)
+From [{{ page.title }}](#cauchy-s-integral-formula-generalization)
for the circular contour around $a$ with radius $r$ we obtain
$$
@@ -82,16 +73,14 @@ and the right hand side of the inequality reduces to the desired expression.
Recall that an *entire* function is a holomorphic function that is defined everywhere in the complex plane.
-{: .theorem-title }
-> Liouville's Theorem
-> {: #liouvilles-theorem }
->
-> Every bounded entire function is constant.
+{% theorem * Liouville's Theorem %}
+Every bounded entire function is constant.
+{% endtheorem %}
{% proof %}
Consider an entire function $f$ and assume that $\norm{f(z)} \le M$ for all $z \in \CC$ and some $M > 0$.
Since $f$ is holomorphic on the whole plane, we may make
-[Cauchy's Estimate](#cauchys-estimate)
+[Cauchy's Estimate](#cauchy-s-estimate)
for all disks centered at any point $a \in \CC$ and with any radius $r>0$.
For the first derivative, we have $\norm{f'(a)} \le M/r$, which tends to $0$ for $r \to \infty$.
Hence $f' = 0$ in the whole plane. This
diff --git a/pages/complex-analysis/one-complex-variable/cauchys-theorem.md b/pages/complex-analysis/one-complex-variable/cauchys-theorem.md
index 15412bc..2445b8b 100644
--- a/pages/complex-analysis/one-complex-variable/cauchys-theorem.md
+++ b/pages/complex-analysis/one-complex-variable/cauchys-theorem.md
@@ -3,37 +3,34 @@ title: Cauchy's Theorem
parent: One Complex Variable
grand_parent: Complex Analysis
nav_order: 2
-# cspell:words
---
# {{ page.title }}
-{: .theorem-title }
-> {{ page.title }} (Homotopy Version)
->
-> Let $G$ be a connected open subset of the complex plane.
-> Let $f : G \to \CC$ be a holomorphic function.
-> If $\gamma_0$, $\gamma_1$ are homotopic closed curves in $G$, then
->
-> $$
-> \int_{\gamma_0} \! f(z) \, dz =
-> \int_{\gamma_1} \! f(z) \, dz
-> $$
->
-> If $\gamma$ is a null-homotopic closed curve in $G$, then
->
-> $$
-> \int_{\gamma} f(z) \, dz = 0
-> $$
+{% theorem Cauchy's Theorem (Homotopy Version) %}
+Let $G$ be a connected open subset of the complex plane.
+Let $f : G \to \CC$ be a holomorphic function.
+If $\gamma_0$, $\gamma_1$ are homotopic closed curves in $G$, then
+
+$$
+\int_{\gamma_0} \! f(z) \, dz =
+\int_{\gamma_1} \! f(z) \, dz
+$$
+
+If $\gamma$ is a null-homotopic closed curve in $G$, then
+
+$$
+\int_{\gamma} f(z) \, dz = 0
+$$
+{% endtheorem %}
{% proof %}
{% endproof %}
{{ page.title }} has a converse:
-{: .theorem-title }
-> Morera's Theorem
->
-> Let $G \subset \CC$ be open and let $f : G \to \CC$ be a continuous function.
-> If $\int_{\gamma} f(z) \, dz = 0$ for every contour $\gamma$ contained in $G$,
-> then $f$ is holomorphic in $G$.
+{% theorem * Morera's Theorem %}
+Let $G \subset \CC$ be open and let $f : G \to \CC$ be a continuous function.
+If $\int_{\gamma} f(z) \, dz = 0$ for every contour $\gamma$ contained in $G$,
+then $f$ is holomorphic in $G$.
+{% endtheorem %}
diff --git a/pages/complex-analysis/one-complex-variable/index.md b/pages/complex-analysis/one-complex-variable/index.md
index 4942ff8..5830a81 100644
--- a/pages/complex-analysis/one-complex-variable/index.md
+++ b/pages/complex-analysis/one-complex-variable/index.md
@@ -3,7 +3,6 @@ title: One Complex Variable
parent: Complex Analysis
nav_order: 1
has_children: true
-# cspell:words
---
# {{ page.title }}
diff --git a/pages/complex-analysis/one-complex-variable/power-series.md b/pages/complex-analysis/one-complex-variable/power-series.md
index 0147f31..31793ab 100644
--- a/pages/complex-analysis/one-complex-variable/power-series.md
+++ b/pages/complex-analysis/one-complex-variable/power-series.md
@@ -3,59 +3,57 @@ title: Power Series
parent: One Complex Variable
grand_parent: Complex Analysis
nav_order: 1
-# cspell:words
---
# {{ page.title }}
-{: .definition-title }
-> Definition ({{ page.title }})
->
-> Let $X$ be a complex Banach space.
-> A *power series* (with values in $X$) is an infinite series of the form
->
->
-> $$
-> \sum_{n=0}^{\infty} x_n (z - a)^n = x_0 + x_1 (z-a) + x_2 (z-a)^2 + \cdots,
-> $$
->
-> where $x_n \in X$ is the *$n$th coefficient*,
-> $z$ is a complex variable and
-> $a$ is the *center* of the series.
-
-{: .lemma }
-> Suppose the Banach space valued power series $\sum_{n=0}^{\infty} x_n (z - a)^n$ converges for $z = a + w$.
-> Then it converges absolutely for all $z$ with $\abs{z-a} < \abs{w}$.
+{% definition Power Series %}
+Let $X$ be a complex Banach space.
+A *power series* (with values in $X$) is an infinite series of the form
+
+$$
+\sum_{n=0}^{\infty} x_n (z - a)^n = x_0 + x_1 (z-a) + x_2 (z-a)^2 + \cdots,
+$$
+
+where $x_n \in X$ is the *$n$th coefficient*,
+$z$ is a complex variable and
+$a$ is the *center* of the series.
+{% enddefinition %}
+
+{% lemma %}
+Suppose the Banach space valued power series $\sum_{n=0}^{\infty} x_n (z - a)^n$ converges for $z = a + w$.
+Then it converges absolutely for all $z$ with $\abs{z-a} < \abs{w}$.
+{% endlemma %}
{% proof %}
TODO
{% endproof %}
-{: .theorem }
-> Suppose $\sum_{n=0}^{\infty} x_n (z - a)^n$ is a Banach space valued power series.
-> Then either
->
-> - the series converges only for $z=a$ (formally $R=0$), or
-> - there exists a number $0<R<\infty$ such that
-> the series converges absolutely whenever $\abs{z-a} < R$
-> and diverges whenever $\abs{z-a} > R$, or
-> - the series converges absolutely for all $z \in \CC$ (formally $R=\infty$).
->
-> The number $R \in [0,\infty]$ is called the *radius of convergence* of the power series.
+{% theorem %}
+Suppose $\sum_{n=0}^{\infty} x_n (z - a)^n$ is a Banach space valued power series.
+Then either
+
+- the series converges only for $z=a$ (formally $R=0$), or
+- there exists a number $0<R<\infty$ such that
+ the series converges absolutely whenever $\abs{z-a} < R$
+ and diverges whenever $\abs{z-a} > R$, or
+- the series converges absolutely for all $z \in \CC$ (formally $R=\infty$).
+
+The number $R \in [0,\infty]$ is called the *radius of convergence* of the power series.
+{% endtheorem %}
{% proof %}
TODO
{% endproof %}
-{: .theorem-title }
-> Cauchy–Hadamard Formula
->
-> Let $\sum_{n=0}^{\infty} x_n (z - a)^n$ be a Banach space valued power series
-> with radius of convergence $R$. Then
->
-> $$
-> \frac{1}{R} = \limsup_{n \to \infty} \norm{x_n}^{1/n}.
-> $$
+{% theorem * Cauchy–Hadamard Formula %}
+Let $\sum_{n=0}^{\infty} x_n (z - a)^n$ be a Banach space valued power series
+with radius of convergence $R$. Then
+
+$$
+\frac{1}{R} = \limsup_{n \to \infty} \norm{x_n}^{1/n}.
+$$
+{% endtheorem %}
{% proof %}
TODO
diff --git a/pages/complex-analysis/one-complex-variable/the-calculus-of-residues.md b/pages/complex-analysis/one-complex-variable/the-calculus-of-residues.md
index b49cdf4..a2fa53d 100644
--- a/pages/complex-analysis/one-complex-variable/the-calculus-of-residues.md
+++ b/pages/complex-analysis/one-complex-variable/the-calculus-of-residues.md
@@ -3,16 +3,13 @@ title: The Calculus of Residues
parent: One Complex Variable
grand_parent: Complex Analysis
nav_order: 4
-# cspell:words
-#published: false
---
# {{ page.title }}
-{: .definition-title }
-> Definition (Residue)
->
-> TODO
+{% definition Residue %}
+TODO
+{% enddefinition %}
Calculation of Residues
@@ -32,24 +29,17 @@ $$
\Res(f,c) = \frac{g(c)}{h'(c)}
$$
+{% theorem * Residue Theorem (Basic Version) %}
+Let $f$ be a function meromorphic in an open subset $G \subset \CC$.
+Let $\gamma$ be a contour in $G$ such that
+the interior of $\gamma$ is contained in $G$
+and contains finitely many poles $c_1, \ldots, c_n$ of $f$.
+Then
-
-
-{: .theorem-title }
-> Residue Theorem (Basic Version)
-> {: #residue-theorem-basic-version }
->
-> Let $f$ be a function meromorphic in an open subset $G \subset \CC$.
-> Let $\gamma$ be a contour in $G$ such that
-> the interior of $\gamma$ is contained in $G$
-> and contains finitely many poles $c_1, \ldots, c_n$ of $f$.
-> Then
->
->
-> $$
-> \int_{\gamma} f(z) \, dz = 2 \pi i \sum_{k=1}^n \Res(f,c_k)
-> $$
-> {: .katex-display .mb-0 }
+$$
+\int_{\gamma} f(z) \, dz = 2 \pi i \sum_{k=1}^n \Res(f,c_k)
+$$
+{% endtheorem %}
{% proof %}
{% endproof %}
diff --git a/pages/complex-analysis/several-complex-variables/edge-of-the-wedge.md b/pages/complex-analysis/several-complex-variables/edge-of-the-wedge.md
index 5adc3f6..4e7666c 100644
--- a/pages/complex-analysis/several-complex-variables/edge-of-the-wedge.md
+++ b/pages/complex-analysis/several-complex-variables/edge-of-the-wedge.md
@@ -3,16 +3,12 @@ title: Edge of the Wedge
parent: Several Complex Variables
grand_parent: Complex Analysis
nav_order: 1
-# cspell:words
---
# {{ page.title }}
-{: .theorem-title }
-> {{ page.title }}
-> {: #{{ page.title | slugify }} }
->
-> ...
+{% theorem %}
+{% endtheorem %}
{% proof %}
{% endproof %}
diff --git a/pages/complex-analysis/several-complex-variables/index.md b/pages/complex-analysis/several-complex-variables/index.md
index 49763d5..803eea4 100644
--- a/pages/complex-analysis/several-complex-variables/index.md
+++ b/pages/complex-analysis/several-complex-variables/index.md
@@ -3,7 +3,6 @@ title: Several Complex Variables
parent: Complex Analysis
nav_order: 2
has_children: true
-# cspell:words
---
# {{ page.title }}
diff --git a/pages/complex-analysis/weak-and-strong-analyticity.md b/pages/complex-analysis/weak-and-strong-analyticity.md
index 7db1dbf..c7ffb85 100644
--- a/pages/complex-analysis/weak-and-strong-analyticity.md
+++ b/pages/complex-analysis/weak-and-strong-analyticity.md
@@ -3,16 +3,9 @@ title: Weak and Strong Analyticity
parent: Complex Analysis
nav_order: 3
published: false
-# cspell:words
---
# {{ page.title }}
-{: .definition-title }
-> {{ page.title }}
-> {: #{{ page.title | slugify }} }
->
-> ...
-
{% proof %}
{% endproof %}