summaryrefslogtreecommitdiffstats
path: root/pages/general-topology
diff options
context:
space:
mode:
Diffstat (limited to 'pages/general-topology')
-rw-r--r--pages/general-topology/compactness/index.md4
-rw-r--r--pages/general-topology/continuity-and-convergence.md2
-rw-r--r--pages/general-topology/metric-spaces/index.md24
-rw-r--r--pages/general-topology/topological-spaces.md12
4 files changed, 23 insertions, 19 deletions
diff --git a/pages/general-topology/compactness/index.md b/pages/general-topology/compactness/index.md
index 37e9b4d..6c2e274 100644
--- a/pages/general-topology/compactness/index.md
+++ b/pages/general-topology/compactness/index.md
@@ -26,7 +26,8 @@ if and only if it has the following property:
then there exists a finite subcollection of $\mathcal{O}$ that covers $X$.
If $\mathcal{A}$ is a collection of subsets of $X$,
-let $\mathcal{A}^c = \braces{ X \setminus A : A \in \mathcal{A}}$ denote the collection of the complements of its members.
+let $\mathcal{A}^c = \braces{ X \setminus A : A \in \mathcal{A}}$ denote
+the collection of the complements of its members.
Clearly, $\mathcal{B}$ is a subcollection of $\mathcal{A}$
if and only if $\mathcal{B}^c$ is a subcollection of $\mathcal{A}^c$.
Moreover, note that $\mathcal{B}$ covers $X$ if and only if
@@ -43,4 +44,3 @@ if and only if $\mathcal{A}^c$ consists of closed subsets of $X$.
{% definition Finite Intersection Property%}
TODO
{% enddefinition %}
-
diff --git a/pages/general-topology/continuity-and-convergence.md b/pages/general-topology/continuity-and-convergence.md
index 7ae4534..57e5ca9 100644
--- a/pages/general-topology/continuity-and-convergence.md
+++ b/pages/general-topology/continuity-and-convergence.md
@@ -1,5 +1,5 @@
---
-title: Continuity & Convergence
+title: Continuity & Convergence
parent: General Topology
nav_order: 2
---
diff --git a/pages/general-topology/metric-spaces/index.md b/pages/general-topology/metric-spaces/index.md
index c0dc45a..52b2b4c 100644
--- a/pages/general-topology/metric-spaces/index.md
+++ b/pages/general-topology/metric-spaces/index.md
@@ -46,13 +46,13 @@ Clearly, a metric subspace of a metric space is itself a metric space.
{% proposition %}
Let $(X,d)$ be a (semi-)metric space.
- For all $x,y,z \in X$ we have the *inverse triangle inequality*
-
+
$$
\abs{d(x,y) - d(y,z)} \le d(x,z).
$$
- For all $v,w,x,y \in X$ we have the *quadrilateral inequality*
-
+
$$
\abs{d(v,w) - d(x,y)} \le d(v,x) + d(w,y)
$$
@@ -141,27 +141,31 @@ every sequence in $X$ has at most one limit.
Let $(X,d_X)$ and $(Y,d_Y)$ be metric spaces.
A mapping $f: X \to Y$ is called
- *continuous at a point $x \in X$* if
-
+
$$
- \forall\epsilon>0 \ \ \exists\delta>0 \ \ \forall x' \in X : \big\lparen d_X(x,x') \le \delta \implies d_Y(f(x),f(x')) < \epsilon \big\rparen
+ \forall\epsilon>0 \ \ \exists\delta>0 \ \ \forall x' \in X :
+ \big\lparen d_X(x,x') \le \delta \implies d_Y(f(x),f(x')) < \epsilon \big\rparen
$$
- *continuous* if it is continuous at every point of $X$, that is
-
+
$$
- \forall x \in X \ \ \forall\epsilon>0 \ \ \exists\delta>0 \ \ \forall x' \in X : \big\lparen d_X(x,x') \le \delta \implies d_Y(f(x),f(x')) < \epsilon \big\rparen
+ \forall x \in X \ \ \forall\epsilon>0 \ \ \exists\delta>0 \ \ \forall x' \in X :
+ \big\lparen d_X(x,x') \le \delta \implies d_Y(f(x),f(x')) < \epsilon \big\rparen
$$
- *uniformly continuous* if
-
+
$$
- \forall\epsilon>0 \ \ \exists\delta>0 \ \ \forall x,x' \in X : \big\lparen d_X(x,x') \le \delta \implies d_Y(f(x),f(x')) < \epsilon \big\rparen
+ \forall\epsilon>0 \ \ \exists\delta>0 \ \ \forall x,x' \in X :
+ \big\lparen d_X(x,x') \le \delta \implies d_Y(f(x),f(x')) < \epsilon \big\rparen
$$
- *Lipschitz continuous* if
-
+
$$
- \exists L \ge 0 \ \ \forall x,x' \in X : d_Y(f(x),f(x')) \le L \, d_X(x,x')
+ \exists L \ge 0 \ \ \forall x,x' \in X :
+ d_Y(f(x),f(x')) \le L \, d_X(x,x')
$$
{% enddefinition %}
diff --git a/pages/general-topology/topological-spaces.md b/pages/general-topology/topological-spaces.md
index b0b1834..cb0c30b 100644
--- a/pages/general-topology/topological-spaces.md
+++ b/pages/general-topology/topological-spaces.md
@@ -75,7 +75,8 @@ is the smallest topology on $X$ containing $\mathcal{A}$.
{% definition Basis for a Topology %}
A *basis for a topology* on a set $X$ is a collection $\mathcal{B}$ of subsets of $X$
-such that for every point $x \in X$
+such that for every point $x \in X$
+
- there exists $B \in \mathcal{B}$ such that $x \in B$,
- if $x \in B_1 \cap B_2$ for $B_1, B_2 \in \mathcal{B}$,
then there exists a $B_3 \in \mathcal{B}$
@@ -85,6 +86,7 @@ such that for every point $x \in X$
{% theorem Topology Generated by a Basis %}
If $X$ is set and $\mathcal{B}$ is a basis for a topology on $X$,
then the topology generated by $\mathcal{B}$ equals
+
- the collection of all subsets $S \subset X$ with the property
that for every $x \in S$ there exists a basis element $B \in \mathcal{B}$
such that $x \in B$ and $B \subset S$;
@@ -125,7 +127,7 @@ then the topology generated by $\mathcal{S}$ equals
Suppose $(X,\mathcal{T})$ is a topological space.
A subset $S$ of $X$
is called *open* with respect to $\mathcal{T}$
-when it belongs to $\mathcal{T}$
+when it belongs to $\mathcal{T}$,
and it is called *closed* with respect to $\mathcal{T}$
when its complement $X \setminus S$ belongs to $\mathcal{T}$.
{% enddefinition %}
@@ -137,10 +139,8 @@ if and only if its complement is closed.
Let $\mathcal{C}$ be the collection of closed subsets of a topological space. Then
{: .mb-0 }
- $X$ and $\varnothing$ belong to $\mathcal{C}$,
-- the intersection of any subcollection of $\mathcal{C}$ belongs to $\mathcal{C}$,
-- the union of any finite subcollection $\mathcal{C}$ belongs to $\mathcal{C}$.
+- the intersection of any subcollection of $\mathcal{C}$ belongs to $\mathcal{C}$,
+- the union of any finite subcollection $\mathcal{C}$ belongs to $\mathcal{C}$.
{% endproposition %}
## The Subspace Topology
-
-