summaryrefslogtreecommitdiffstats
path: root/pages/operator-algebras
diff options
context:
space:
mode:
Diffstat (limited to 'pages/operator-algebras')
-rw-r--r--pages/operator-algebras/banach-algebras/index.md113
-rw-r--r--pages/operator-algebras/c-star-algebras/positive-linear-functionals.md40
-rw-r--r--pages/operator-algebras/c-star-algebras/states.md30
-rw-r--r--pages/operator-algebras/operator-topologies.md14
4 files changed, 104 insertions, 93 deletions
diff --git a/pages/operator-algebras/banach-algebras/index.md b/pages/operator-algebras/banach-algebras/index.md
index 2fb8f03..3335d78 100644
--- a/pages/operator-algebras/banach-algebras/index.md
+++ b/pages/operator-algebras/banach-algebras/index.md
@@ -47,25 +47,23 @@ We say that $\mathcal{A}$ is an *unital* Banach algebra, if $\mathcal{A}$ contai
It is easy to see that a Banach algebra has at most one unit.
-{: .proposition-title #neumann-series }
-> Proposition (Neumann Series)
->
-> Let $\mathcal{A}$ be a unital Banach algebra
-> and let $x \in \mathcal{A}$ satisfy $\norm{x} < 1$.
-> Then $\mathbf{1}-x$ is invertible
-> and the inverse is given by the series
->
-> $$
-> (\mathbf{1}-x)^{-1} = \sum_{n=0}^{\infty} x^n,
-> $$
->
-> which converges absolutely in norm.
-> Moreover, we have the estimate
->
-> $$
-> \norm{(\mathbf{1}-x)^{-1}} \le \frac{1}{1 - \norm{x}}.
-> $$
-> {: .katex-display .mb-0 }
+{% proposition Neumann Series %}
+Let $\mathcal{A}$ be a unital Banach algebra
+and let $x \in \mathcal{A}$ satisfy $\norm{x} < 1$.
+Then $\mathbf{1}-x$ is invertible,
+and the inverse is given by the series
+
+$$
+(\mathbf{1}-x)^{-1} = \sum_{n=0}^{\infty} x^n,
+$$
+
+which converges absolutely in norm.
+Moreover, we have the estimate
+
+$$
+\norm{(\mathbf{1}-x)^{-1}} \le \frac{1}{1 - \norm{x}}.
+$$
+{% endproposition %}
{% proof %}
Since the Banach algebra norm is submultiplicative,
@@ -91,18 +89,17 @@ The estimate follows from $\norm{s} \le \sum \norm{x}^n = 1 / (1 - \norm{x})$.
## The Spectrum
-{: .definition-title }
-> Definition (Spectrum, Resolvent Set)
->
-> Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$.
-> {: .mb-0 }
->
-> {: .my-0 }
-> - The *spectrum* of $x$ is the set $\sigma(x) = \lbrace\lambda \in \CC : x - \lambda$ is not invertible in $\mathcal{A}\rbrace$. \
-> The elements of $\sigma(x)$ are called *spectral values* of $x$.
-> - The *resolvent set* of $x$ is the set $\rho (x) = \CC \setminus \sigma(x)$. \
-> For $\lambda \in \rho(x)$ the *resolvent* of $x$ is the algebra element $R_{\lambda} = (\lambda - x)^{-1}$. \
-> The mapping $R : \rho(x) \to \mathcal{A}$, $\lambda \mapsto R_{\lambda}$, is called *resolvent map*.
+{% definition Spectrum, Resolvent Set %}
+Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$.
+{: .mb-0 }
+
+{: .my-0 }
+- The *spectrum* of $x$ is the set $\sigma(x) = \lbrace\lambda \in \CC : x - \lambda$ is not invertible in $\mathcal{A}\rbrace$. \
+ The elements of $\sigma(x)$ are called *spectral values* of $x$.
+- The *resolvent set* of $x$ is the set $\rho (x) = \CC \setminus \sigma(x)$. \
+ For $\lambda \in \rho(x)$ the *resolvent* of $x$ is the algebra element $R_{\lambda} = (\lambda - x)^{-1}$. \
+ The mapping $R : \rho(x) \to \mathcal{A}$, $\lambda \mapsto R_{\lambda}$, is called *resolvent map*.
+{% enddefinition %}
{% theorem %}
Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$.
@@ -122,7 +119,7 @@ $$
{% proof %}
Let $\lambda$ be in the resolvent set of $x$.
-Then $\lambda - x$ is invertible and we have for all $\mu \in \CC$
+Then $\lambda - x$ is invertible, and we have for all $\mu \in \CC$
$$
\mu - x = \bigl(\mathbf{1} - (\lambda - \mu) (\lambda - x)^{-1}\bigr) (\lambda - x).
@@ -165,7 +162,7 @@ We assume that $\sigma(x)$ is empty
and derive a contradiction.
Observe that the resolvent map $R$ is defined on the whole complex plane.
By [this corollary](#resolvent-map-is-analytic), $R$ is analytic, hence entire.
-Analytic functions are countinuous;
+Analytic functions are continuous;
therefore $R$ is bounded on the compact disk $\abs{\lambda} \le 2 \norm{x}$.
For $\abs{\lambda} > 2 \norm{x}$ we may expand $R_{\lambda}$ into a [Neumann series](#neumann-series),
@@ -188,13 +185,12 @@ $$
This shows that $R$ is a bounded entire function. Now
[Liouville's Theorem](/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.html#liouvilles-theorem)
(for vector-valued functions) implies that $R$ is constant.
-This is contradictiory because XXX
+This is contradictory because XXX
{% endproof %}
-{: .theorem-title }
-> Gelfand–Mazur Theorem
->
-> Every Banach algebra in which all nonzero elements are invertible is isometrically isomorphic to $\CC$.
+{% theorem * Gelfand–Mazur Theorem %}
+Every Banach algebra in which all nonzero elements are invertible is isometrically isomorphic to $\CC$.
+{% endtheorem %}
{% proof %}
For any Banach algebra $A$,
@@ -220,40 +216,39 @@ include:
- $\mathcal{A}$ is a division algebra.
- The underlying ring of $\mathcal{A}$ is a field.
-{: .theorem-title }
-> Spectral Radius Formula
->
-> For every Banach algebra element $x$ the spectral radius is given by
->
-> $$
-> r(x) = \lim_{n \to \infty} \norm{x^n}^{1/n}.
-> $$
-> {: .katex-display .mb-0 }
+{% theorem * Spectral Radius Formula %}
+For every Banach algebra element $x$ the spectral radius is given by
+
+$$
+r(x) = \lim_{n \to \infty} \norm{x^n}^{1/n}.
+$$
+{% endtheorem %}
## Gelfand’s Theory
-Proposition
+{% proposition %}
Let $\mathcal{A}$ be a unital commutative Banach algebra.
If $\phi$ is a nonzero multiplicative linear functional on $\mathcal{A}$,
then its kernel $\ker \phi$ is a maximal ideal in $\mathcal{A}$.
Every maximal ideal $\mathcal{I}$ in $\mathcal{A}$ is of the form
$I = \ker \phi$ for some nonzero multiplicative linear functional $\phi$ on $\mathcal{A}$.
+{% endproposition %}
-In other words, the mapping $\phi \mapsto \ker \phi$ is gives a bijection
+In other words, the mapping $\phi \mapsto \ker \phi$ gives a bijection
between the sets of nonzero multiplicative linear functionals and maximal ideals.
+{% definition %}
+The *Gelfand space* $\Gamma_{\mathcal{A}}$ of a unital commutative Banach algebra $\mathcal{A}$
+is the set of maximal ideals of $\mathcal{A}$; its topology is inherited from
+the weak* topology on the dual of $\mathcal{A}$ via the correspondence described above.
+{% enddefinition %}
-Definition
+{% definition %}
The *maximal ideal space* $\mathcal{M}_{\mathcal{A}}$ of a unital commutative Banach algebra $\mathcal{A}$
is the set of maximal ideals of $\mathcal{A}$; its topology is inherited from
-the weak* topology on the dual of $\mathcal{A}$ via the correspondece described above.
-
-Proposition
-The *maximal ideal space* of a unital commutative Banach algebra is a compact Hausdorff space.
-
-{% definition bla, blubb %}
-a
-b
+the weak* topology on the dual of $\mathcal{A}$ via the correspondence described above.
{% enddefinition %}
-
+{% proposition %}
+The *Gelfand space* of a unital commutative Banach algebra is a compact Hausdorff space.
+{% endproposition %}
diff --git a/pages/operator-algebras/c-star-algebras/positive-linear-functionals.md b/pages/operator-algebras/c-star-algebras/positive-linear-functionals.md
index 05b1d4f..ea15f87 100644
--- a/pages/operator-algebras/c-star-algebras/positive-linear-functionals.md
+++ b/pages/operator-algebras/c-star-algebras/positive-linear-functionals.md
@@ -3,37 +3,33 @@ title: Positive Linear Functionals
parent: C*-Algebras
grand_parent: Operator Algebras
nav_order: 1
-# cspell:words
---
# {{ page.title }}
all algebra are assumed to be unital
-{: .definition-title }
-> Hermitian Functional, Positive Functional, State
->
-> A linear functional on a $C^*$-algebra $\mathcal{A}$ is said to be
->
-> - *Hermitian* if $\phi(x*) = \overline{\phi(x)}$ for all $x \in \mathcal{A}$.
-> - *positive* if $\phi(x) \ge 0$ for all $x \ge 0$.
-> - a *state* if $\phi$ is positive and $\phi(\mathbf{1}) = 1$.
->
-
-{: .definition-title }
-> State
->
-> A norm-one positive linear functional on a $C^*$-algebra is called a *state*.
-
-{: .definition-title }
-> State Space
->
-> The *state space* of a $C^*$-algebra $\mathcal{A}$, denoted by $S(\mathcal{A})$, is the set of all states of $\mathcal{A}$.
+{% definition Hermitian Functional, Positive Functional, State %}
+A linear functional on a $C^*$-algebra $\mathcal{A}$ is said to be
+
+- *Hermitian* if $\phi(x*) = \overline{\phi(x)}$ for all $x \in \mathcal{A}$.
+- *positive* if $\phi(x) \ge 0$ for all $x \ge 0$.
+- a *state* if $\phi$ is positive and $\phi(\mathbf{1}) = 1$.
+{% enddefinition %}
+
+{% definition State %}
+A norm-one positive linear functional on a $C^*$-algebra is called a *state*.
+{% enddefinition %}
+
+{% definition State Space %}
+The *state space* of a $C^*$-algebra $\mathcal{A}$, denoted by $S(\mathcal{A})$, is the set of all states of $\mathcal{A}$.
+{% enddefinition %}
Note that $S(\mathcal{A})$ is a subset of the unit ball in the dual space of $\mathcal{A}$.
-{: .proposition }
-> The state space of a $C^*$-algebra is convex and weak* compact.
+{% proposition %}
+The state space of a $C^*$-algebra is convex and weak* compact.
+{% endproposition %}
{% proof %}
{% endproof %}
diff --git a/pages/operator-algebras/c-star-algebras/states.md b/pages/operator-algebras/c-star-algebras/states.md
index 619bc9a..29cf5f5 100644
--- a/pages/operator-algebras/c-star-algebras/states.md
+++ b/pages/operator-algebras/c-star-algebras/states.md
@@ -3,27 +3,28 @@ title: States
parent: C*-Algebras
grand_parent: Operator Algebras
nav_order: 1
-# cspell:words
---
# {{ page.title }}
-{: .definition-title }
-> Definition (State, State Space)
->
-> A norm-one [positive linear functional]( {% link pages/operator-algebras/c-star-algebras/positive-linear-functionals.md %} ) on a C\*-algebra is called a *state*.\
-> The *state space* $S(\mathcal{A})$ of a C\*-algebra $\mathcal{A}$ is the set of all its states.
+{% definition State, State Space %}
+A norm-one [positive linear functional]( {% link pages/operator-algebras/c-star-algebras/positive-linear-functionals.md %} ) on a C\*-algebra is called a *state*.\
+The *state space* $S(\mathcal{A})$ of a C\*-algebra $\mathcal{A}$ is the set of all its states.
+{% enddefinition %}
-Note that $S(\mathcal{A})$ is a subset of the unit ball in the dual space of $\mathcal{A}$.
+Note that $S(\mathcal{A})$ is a subset of the closed unit ball in the dual space of $\mathcal{A}$.
-{: .corollary }
-> A linear functional $\omega$ on a C\*-algebra is a state
-> if and only if $\omega(\mathbf{1}) = 1 = \norm{\omega}$.
+{% corollary %}
+A linear functional $\omega$ on a C\*-algebra is a state
+if and only if $\omega(\mathbf{1}) = 1 = \norm{\omega}$.
+{% endcorollary %}
-{: .proposition }
-> The state space of a C\*-algebra is convex and weak\* compact.
+{% proposition %}
+The state space of a C\*-algebra is convex and weak\* compact.
+{% endproposition %}
{% proof %}
+Let $\mathcal{A}$ be a C\*-algebra and let $S(\mathcal{A})$ be its state space.
First, we show convexity.
Let $\omega_0, \omega_1$ be states on $\mathcal{A}$ and let $t \in (0,1)$.
Consider the convex combination $\omega = (1-t)\omega_0 + t\omega_1$.
@@ -41,3 +42,8 @@ This means that $\omega_i(x) \to \omega(x)$ for every $x \in \mathcal{A}$.
For all $i$ we have $\omega_i(x) \ge 0$ for $x \ge 0$ and $\omega_i(\mathbf{1}) = 1$; hence $\omega(x) \ge 0$ for $x \ge 0$ and $\omega(\mathbf{1}) = 1$. Thus $\omega$ is again a state.
This shows that the state space is weak* closed, completing the proof.
{% endproof %}
+
+TODO: state space is nonempty
+
+TODO: pure states
+
diff --git a/pages/operator-algebras/operator-topologies.md b/pages/operator-algebras/operator-topologies.md
new file mode 100644
index 0000000..2d7722e
--- /dev/null
+++ b/pages/operator-algebras/operator-topologies.md
@@ -0,0 +1,14 @@
+---
+title: Operator Topologies
+parent: Operator Algebras
+nav_order: 1
+---
+
+# {{ page.title }}
+
+{% definition Weak & Strong Operator Topology %}
+TODO
+{% enddefinition %}
+
+{% proof %}
+{% endproof %}