summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
authorJustin Gassner <justin.gassner@mailbox.org>2023-09-12 07:36:33 +0200
committerJustin Gassner <justin.gassner@mailbox.org>2024-01-13 20:41:27 +0100
commit777f9d3fd8caf56e6bc6999a4b05379307d0733f (patch)
treedc42d2ae9b4a8e7ee467f59e25c9e122e63f2e04
downloadsite-777f9d3fd8caf56e6bc6999a4b05379307d0733f.tar.zst
Initial commit
-rw-r--r--.cspell.yaml29
m---------.cspell/my-cspell-dicts0
-rw-r--r--.gitignore4
-rw-r--r--.gitmodules3
-rw-r--r--.pre-commit-config.yaml46
-rw-r--r--Gemfile10
-rw-r--r--_bibliography/functional-analysis-basics.bib6
-rw-r--r--_bibliography/general-topology.bib8
-rw-r--r--_config.yaml78
-rw-r--r--_includes/footer_custom.html4
-rw-r--r--_includes/head_custom.html33
-rw-r--r--_includes/nav_footer_custom.html2
-rw-r--r--_includes/navigation.html5
-rw-r--r--_plugins/enunciation.rb32
-rw-r--r--_plugins/proof.rb12
-rw-r--r--_plugins/singledollar.rb19
-rw-r--r--_sass/custom/custom.scss3
-rwxr-xr-x_scripts/new.lua112
-rw-r--r--about.md11
-rw-r--r--favicon.icobin0 -> 15406 bytes
-rw-r--r--pages/complex-analysis/index.md8
-rw-r--r--pages/complex-analysis/one-complex-variable/basics.md23
-rw-r--r--pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md102
-rw-r--r--pages/complex-analysis/one-complex-variable/cauchys-theorem.md39
-rw-r--r--pages/complex-analysis/one-complex-variable/index.md9
-rw-r--r--pages/complex-analysis/one-complex-variable/power-series.md62
-rw-r--r--pages/complex-analysis/one-complex-variable/the-calculus-of-residues.md60
-rw-r--r--pages/complex-analysis/several-complex-variables/edge-of-the-wedge.md18
-rw-r--r--pages/complex-analysis/several-complex-variables/index.md12
-rw-r--r--pages/complex-analysis/weak-and-strong-analyticity.md18
-rw-r--r--pages/distribution-theory/definitions.md9
-rw-r--r--pages/distribution-theory/index.md26
-rw-r--r--pages/distribution-theory/sobolev-theory.md9
-rw-r--r--pages/functional-analysis-basics/banach-alaoglu-theorem.md19
-rw-r--r--pages/functional-analysis-basics/compact-operators.md44
-rw-r--r--pages/functional-analysis-basics/index.md11
-rw-r--r--pages/functional-analysis-basics/reflexive-spaces.md123
-rw-r--r--pages/functional-analysis-basics/the-fundamental-four/closed-graph-theorem.md31
-rw-r--r--pages/functional-analysis-basics/the-fundamental-four/hahn-banach-theorem.md147
-rw-r--r--pages/functional-analysis-basics/the-fundamental-four/index.md8
-rw-r--r--pages/functional-analysis-basics/the-fundamental-four/open-mapping-theorem.md109
-rw-r--r--pages/functional-analysis-basics/the-fundamental-four/uniform-boundedness-theorem.md76
-rw-r--r--pages/general-topology/baire-spaces.md83
-rw-r--r--pages/general-topology/baire-spaces.md.txt73
-rw-r--r--pages/general-topology/compactness/basics.md43
-rw-r--r--pages/general-topology/compactness/index.md9
-rw-r--r--pages/general-topology/compactness/tychonoff-product-theorem.md19
-rw-r--r--pages/general-topology/index.md11
-rw-r--r--pages/general-topology/jordan-curve-theorem.md18
-rw-r--r--pages/operator-algebras/banach-algebras/index.md259
-rw-r--r--pages/operator-algebras/c-star-algebras/index.md8
-rw-r--r--pages/operator-algebras/c-star-algebras/positive-linear-functionals.md39
-rw-r--r--pages/operator-algebras/c-star-algebras/states.md43
-rw-r--r--pages/operator-algebras/index.md7
-rw-r--r--pages/quantum-field-theory/index.md8
-rw-r--r--pages/quantum-field-theory/wightman-axioms/index.md13
-rw-r--r--pages/quantum-field-theory/wightman-axioms/scalar-field.md19
-rw-r--r--pages/spectral-theory/index.md8
-rw-r--r--pages/spectral-theory/of-unbounded-operators/index.md9
-rw-r--r--pages/spectral-theory/test/basic.md59
-rw-r--r--pages/spectral-theory/test/index.md8
-rw-r--r--pages/tomita-takesaki-theory/index.md9
-rw-r--r--pages/tomita-takesaki-theory/standard-subspaces.md19
-rw-r--r--pages/unbounded-operators/adjoint-operators.md15
-rw-r--r--pages/unbounded-operators/graph-and-closedness.md22
-rw-r--r--pages/unbounded-operators/hellinger-toeplitz-theorem.md116
-rw-r--r--pages/unbounded-operators/index.md7
-rw-r--r--pages/unbounded-operators/quadratic-forms.md23
68 files changed, 2327 insertions, 0 deletions
diff --git a/.cspell.yaml b/.cspell.yaml
new file mode 100644
index 0000000..896a692
--- /dev/null
+++ b/.cspell.yaml
@@ -0,0 +1,29 @@
+version: "0.2"
+language: "en_US"
+minWordLength: 3
+dictionaryDefinitions:
+ - name: names
+ addWords: true
+ path: "./.cspell/my-cspell-dicts/names.txt"
+ignorePaths:
+ - "./.cspell/"
+dictionaries:
+ - latex
+ - names
+words:
+ - abs
+ - gfm
+ - hilb
+ - innerp
+ - katex
+ - norm
+ - qed
+ - thms
+ - jxir
+ - srv
+ - mathbb
+ - enspace
+ - callouts
+ - injective
+ - Closedness
+ - vcs
diff --git a/.cspell/my-cspell-dicts b/.cspell/my-cspell-dicts
new file mode 160000
+Subproject 5f3c438665f20f7fa0ad17c35b87946426a0cc4
diff --git a/.gitignore b/.gitignore
new file mode 100644
index 0000000..2ca8682
--- /dev/null
+++ b/.gitignore
@@ -0,0 +1,4 @@
+_site/
+.sass-cache/
+.jekyll-cache/
+.jekyll-metadata
diff --git a/.gitmodules b/.gitmodules
new file mode 100644
index 0000000..7f77fb6
--- /dev/null
+++ b/.gitmodules
@@ -0,0 +1,3 @@
+[submodule ".cspell/my-cspell-dicts"]
+ path = .cspell/my-cspell-dicts
+ url = git.jxir.de:my-cspell-dicts
diff --git a/.pre-commit-config.yaml b/.pre-commit-config.yaml
new file mode 100644
index 0000000..c518df3
--- /dev/null
+++ b/.pre-commit-config.yaml
@@ -0,0 +1,46 @@
+repos:
+ - repo: https://github.com/pre-commit/pre-commit-hooks
+ rev: v4.4.0
+ hooks:
+ - id: file-contents-sorter
+ files: \.(txt)$
+ - id: check-added-large-files
+ - id: check-case-conflict
+ - id: check-executables-have-shebangs
+ - id: check-merge-conflict
+ - id: check-shebang-scripts-are-executable
+ - id: check-symlinks
+ - id: check-vcs-permalinks
+ - id: check-yaml
+ - id: destroyed-symlinks
+ - id: end-of-file-fixer
+ - id: fix-byte-order-marker
+ - id: mixed-line-ending
+ - id: trailing-whitespace
+ - repo: https://github.com/pre-commit/mirrors-prettier
+ rev: v3.0.3
+ hooks:
+ - id: prettier
+ types_or: [ruby, yaml]
+ - repo: https://github.com/streetsidesoftware/cspell-cli
+ rev: v7.3.0
+ hooks:
+ - id: cspell
+ - repo: https://github.com/klieret/jekyll-relative-url-check
+ rev: v2.0.2
+ hooks:
+ - id: jekyll-relative-url-check-markdown
+ - id: jekyll-relative-url-check-html
+ - repo: https://github.com/adrienverge/yamllint.git
+ rev: v1.29.0
+ hooks:
+ - id: yamllint
+ args: [--strict]
+ - repo: https://github.com/Calinou/pre-commit-luacheck
+ rev: v1.0.0
+ hooks:
+ - id: luacheck
+ - repo: https://github.com/JohnnyMorganz/StyLua
+ rev: v0.18.2
+ hooks:
+ - id: stylua-system
diff --git a/Gemfile b/Gemfile
new file mode 100644
index 0000000..a4891fc
--- /dev/null
+++ b/Gemfile
@@ -0,0 +1,10 @@
+# frozen_string_literal: true
+
+source "https://rubygems.org"
+
+gem "jekyll"
+gem "just-the-docs"
+gem "kramdown-math-katex"
+gem "mini_racer"
+gem 'jekyll-scholar'
+gem 'jekyll-include-cache'
diff --git a/_bibliography/functional-analysis-basics.bib b/_bibliography/functional-analysis-basics.bib
new file mode 100644
index 0000000..45bcd37
--- /dev/null
+++ b/_bibliography/functional-analysis-basics.bib
@@ -0,0 +1,6 @@
+@book{kreyszig,
+ title = {Introductory Functional Analysis With Applications},
+ author = {Erwin Kreyszig},
+ publisher = {John Wiley & Sons},
+ year = {1978},
+}
diff --git a/_bibliography/general-topology.bib b/_bibliography/general-topology.bib
new file mode 100644
index 0000000..7118fd3
--- /dev/null
+++ b/_bibliography/general-topology.bib
@@ -0,0 +1,8 @@
+@book{munkres,
+ title = {Topology},
+ author = {James Munkres},
+ publisher = {Pearson Education Limited},
+ isbn = {978-1-292-02362-5},
+ year = {2014},
+ edition = {2},
+}
diff --git a/_config.yaml b/_config.yaml
new file mode 100644
index 0000000..0bcb235
--- /dev/null
+++ b/_config.yaml
@@ -0,0 +1,78 @@
+title: jxir's math pages
+description: Desc
+
+source: .
+destination: /srv/http/
+url: https://jxir.de
+# baseurl: /masters-thesis
+permalink: /:basename:output_ext
+
+theme: just-the-docs
+plugins:
+ - jekyll-include-cache
+ - jekyll-scholar
+
+defaults:
+ - scope:
+ path: "pages"
+ values:
+ layout: default
+
+search:
+ tokenizer_separator: /[\s\-\u2013/]+/
+
+#color_scheme: dark
+
+kramdown:
+ input: GFMKatex
+ parse_block_html: true
+ math_engine: katex
+ math_engine_opts:
+ {
+ macros:
+ {
+ "\\NN": "\\mathbb{N}",
+ "\\ZZ": "\\mathbb{Z}",
+ "\\QQ": "\\mathbb{Q}",
+ "\\RR": "\\mathbb{R}",
+ "\\CC": "\\mathbb{C}",
+ "\\KK": "\\mathbb{K}",
+ "\\hilb": "\\mathcal{#1}",
+ "\\abs": "\\lvert #1 \\rvert",
+ "\\norm": "\\lVert #1 \\rVert",
+ "\\braces": "\\lbrace #1 \\rbrace",
+ "\\innerp": "\\langle #1, #2 \\rangle",
+ "\\dom": "D(#1)",
+ "\\ran": "R(#1)",
+ "\\graph": "G(#1)",
+ "\\pspec": "\\sigma_p(#1)",
+ "\\cspec": "\\sigma_c(#1)",
+ "\\rspec": "\\sigma_r(#1)",
+ "\\Res": "\\operatorname{Res}",
+ },
+ }
+
+qed: '<span style="float:right;">$\square\enspace$</span>'
+
+callouts:
+ definition:
+ title: Definition
+ color: grey-dk
+ theorem:
+ title: Theorem
+ color: green
+ proposition:
+ title: Proposition
+ color: green
+ lemma:
+ title: Lemma
+ color: green
+ corollary:
+ title: Corollary
+ color: green
+ axiom:
+ title: Axiom
+ color: yellow
+
+scholar:
+ style: chicago-author-date
diff --git a/_includes/footer_custom.html b/_includes/footer_custom.html
new file mode 100644
index 0000000..a29ea6e
--- /dev/null
+++ b/_includes/footer_custom.html
@@ -0,0 +1,4 @@
+<p class="text-small text-grey-dk-100 mb-0">
+ Written by Justin Gassner.
+ <a href="https://git.jxir.de/site/tree/{{ page.path }}">View Source</a>
+</p>
diff --git a/_includes/head_custom.html b/_includes/head_custom.html
new file mode 100644
index 0000000..365d5f5
--- /dev/null
+++ b/_includes/head_custom.html
@@ -0,0 +1,33 @@
+<link
+ rel="stylesheet"
+ type="text/css"
+ href="{{ '/assets/katex/katex.min.css' | relative_url }}"
+/>
+<link
+ rel="preload"
+ href="{{ '/assets/katex/fonts/KaTeX_Main-Regular.woff2' | relative_url }}"
+ as="font"
+ type="font/woff2"
+ crossorigin
+/>
+<link
+ rel="preload"
+ href="{{ '/assets/katex/fonts/KaTeX_Math-Italic.woff2' | relative_url }}"
+ as="font"
+ type="font/woff2"
+ crossorigin
+/>
+<link
+ rel="preload"
+ href="{{ '/assets/katex/fonts/KaTeX_AMS-Regular.woff2' | relative_url }}"
+ as="font"
+ type="font/woff2"
+ crossorigin
+/>
+<link
+ rel="preload"
+ href="{{ '/assets/katex/fonts/KaTeX_Caligraphic-Regular.woff2' | relative_url }}"
+ as="font"
+ type="font/woff2"
+ crossorigin
+/>
diff --git a/_includes/nav_footer_custom.html b/_includes/nav_footer_custom.html
new file mode 100644
index 0000000..46b6c5d
--- /dev/null
+++ b/_includes/nav_footer_custom.html
@@ -0,0 +1,2 @@
+<footer class="site-footer">
+</footer>
diff --git a/_includes/navigation.html b/_includes/navigation.html
new file mode 100644
index 0000000..ab853aa
--- /dev/null
+++ b/_includes/navigation.html
@@ -0,0 +1,5 @@
+<nav>
+ {% for item in site.data.navigation %}
+ <a href="{{ item.link }}" {% if page.url == item.link %}class="current"{% endif %}>{{ item.name }}</a>
+ {% endfor %}
+</nav>
diff --git a/_plugins/enunciation.rb b/_plugins/enunciation.rb
new file mode 100644
index 0000000..75c777a
--- /dev/null
+++ b/_plugins/enunciation.rb
@@ -0,0 +1,32 @@
+module Jekyll
+ class EnunciationTagBlock < Liquid::Block
+
+ def initialize(tag_name, arg, parse_context)
+ super
+ @arg = arg.strip
+ end
+
+ def render(context)
+ text = super
+ # If the enunciation ends with a KaTeX displayed equation,
+ # then we remove the bottom margin.
+ if text[-3,3] == "$$\n"
+ text += '{: .katex-display .mb-0 }'
+ end
+ # Check if a description was given.
+ if @arg.length < 1
+ "{: .#{block_name} }\n #{text.gsub!(/^/,'> ')}"
+ else
+ "{: .#{block_name}-title }\n> #{block_name.capitalize} (#{@arg})\n>\n#{text.gsub!(/^/,'> ')}"
+ end
+ end
+
+ end
+end
+
+Liquid::Template.register_tag('definition', Jekyll::EnunciationTagBlock)
+Liquid::Template.register_tag('theorem', Jekyll::EnunciationTagBlock)
+Liquid::Template.register_tag('proposition', Jekyll::EnunciationTagBlock)
+Liquid::Template.register_tag('lemma', Jekyll::EnunciationTagBlock)
+Liquid::Template.register_tag('corollary', Jekyll::EnunciationTagBlock)
+Liquid::Template.register_tag('axiom', Jekyll::EnunciationTagBlock)
diff --git a/_plugins/proof.rb b/_plugins/proof.rb
new file mode 100644
index 0000000..ab824e5
--- /dev/null
+++ b/_plugins/proof.rb
@@ -0,0 +1,12 @@
+module Jekyll
+ class ProofTagBlock < Liquid::Block
+
+ def render(context)
+ text = super
+ "<span style=\"text-transform: uppercase; font-weight: bold; font-size: .75em;\">Proof</span> #{text} <span style=\"float:right;\">$\\square\\enspace$</span>"
+ end
+
+ end
+end
+
+Liquid::Template.register_tag('proof', Jekyll::ProofTagBlock)
diff --git a/_plugins/singledollar.rb b/_plugins/singledollar.rb
new file mode 100644
index 0000000..fe665ab
--- /dev/null
+++ b/_plugins/singledollar.rb
@@ -0,0 +1,19 @@
+# https://gist.github.com/sp301415/db9f7bee03bda483aa2ca7c0ca92fbfa
+
+require 'kramdown/parser/kramdown'
+require 'kramdown-parser-gfm'
+
+class Kramdown::Parser::GFMKatex < Kramdown::Parser::GFM
+ # Override inline math parser
+ @@parsers.delete(:inline_math)
+
+ INLINE_MATH_START = /(\$+)([^\$]+)(\$+)/m
+
+ def parse_inline_math
+ start_line_number = @src.current_line_number
+ @src.pos += @src.matched_size
+ @tree.children << Element.new(:math, @src.matched[1..-2], nil, category: :span, location: start_line_number)
+ end
+
+ define_parser(:inline_math, INLINE_MATH_START, '\$')
+end
diff --git a/_sass/custom/custom.scss b/_sass/custom/custom.scss
new file mode 100644
index 0000000..43a40c8
--- /dev/null
+++ b/_sass/custom/custom.scss
@@ -0,0 +1,3 @@
+blockquote.theorem {
+ border-left: none;
+}
diff --git a/_scripts/new.lua b/_scripts/new.lua
new file mode 100755
index 0000000..e57100d
--- /dev/null
+++ b/_scripts/new.lua
@@ -0,0 +1,112 @@
+#!/usr/bin/lua
+
+local lfs = require("lfs")
+
+local subcommand = arg[1]
+if not subcommand then
+ print("No arguments given.")
+ goto exit
+end
+
+if not (subcommand == "page" or subcommand == "dir") then
+ print("Unknown subcommand '" .. subcommand .. "'.")
+ goto exit
+end
+
+local title = table.concat(arg, " ", 2)
+if not title or title == "" then
+ print("No title given.")
+ goto exit
+end
+
+local function slugify(str)
+ local strlow = string.lower(str)
+ local slug = string.gsub(strlow, "%W", "-")
+ return slug
+end
+
+local titleslug = slugify(title)
+print("Title: " .. title)
+print(" Slug: " .. titleslug)
+
+local parent, grand_parent
+local file = io.open("index.md", "r")
+if file then
+ print("Found index.md.")
+ io.input(file)
+ for line in io.lines() do
+ local match = string.match(line, "title: (.*)")
+ if match then
+ parent = match
+ print("--> Parent: " .. parent)
+ end
+ match = string.match(line, "parent: (.*)")
+ if match then
+ grand_parent = match
+ print("--> Grand parent: " .. grand_parent)
+ end
+ end
+ io.close(file)
+else
+ print("No index.md found.")
+end
+
+if arg[1] == "page" then
+ file = io.open(titleslug .. ".md", "w")
+ if file then
+ io.output(file)
+ print("Writing file: " .. titleslug .. ".md")
+ io.write("---\ntitle: " .. title .. "\n")
+ if parent then
+ io.write("parent: " .. parent .. "\n")
+ end
+ if grand_parent then
+ io.write("grand_parent: " .. grand_parent .. "\n")
+ end
+ io.write([[
+nav_order: 1
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .theorem-title }
+> {{ page.title }}
+> {: #{{ page.title | slugify }} }
+>
+> ...
+
+{% proof %}
+{% endproof %}
+]])
+ io.close(file)
+ end
+elseif arg[1] == "dir" then
+ if grand_parent then
+ print("Cannot have deeper directories.")
+ goto exit
+ end
+ print("Making directory: " .. titleslug .. "/")
+ lfs.mkdir(titleslug)
+ file = io.open(titleslug .. "/index.md", "w")
+ if file then
+ io.output(file)
+ print("Writing file: " .. titleslug .. "/index.md")
+ io.write("---\ntitle: " .. title .. "\n")
+ if parent then
+ io.write("parent: " .. parent .. "\n")
+ end
+ io.write([[
+nav_order: 1
+has_children: true
+has_toc: false
+# cspell:words
+---
+
+# {{ page.title }}
+]])
+ io.close(file)
+ end
+end
+
+::exit::
diff --git a/about.md b/about.md
new file mode 100644
index 0000000..0d7d816
--- /dev/null
+++ b/about.md
@@ -0,0 +1,11 @@
+---
+title: About
+nav_order: 1
+description: "Just the Docs is a responsive Jekyll theme with built-in search that is easily customizable and hosted on GitHub Pages."
+layout: default
+permalink: /
+---
+
+# About page
+
+This page tells you a little bit about me.
diff --git a/favicon.ico b/favicon.ico
new file mode 100644
index 0000000..cc016c3
--- /dev/null
+++ b/favicon.ico
Binary files differ
diff --git a/pages/complex-analysis/index.md b/pages/complex-analysis/index.md
new file mode 100644
index 0000000..d07109e
--- /dev/null
+++ b/pages/complex-analysis/index.md
@@ -0,0 +1,8 @@
+---
+title: Complex Analysis
+nav_order: 2
+has_children: true
+# cspell:words
+---
+
+# {{ page.title }}
diff --git a/pages/complex-analysis/one-complex-variable/basics.md b/pages/complex-analysis/one-complex-variable/basics.md
new file mode 100644
index 0000000..b30d18c
--- /dev/null
+++ b/pages/complex-analysis/one-complex-variable/basics.md
@@ -0,0 +1,23 @@
+---
+title: Basics
+parent: One Complex Variable
+grand_parent: Complex Analysis
+nav_order: 1
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .theorem }
+> {: #holomorphic-function-is-constant-if-derivative-vanishes }
+>
+> If the derivative of a holomorphic function vanishes
+> throughout a connected open subset of the complex plane,
+> then it must be constant on that set.
+>
+> More generally, if the derivative of a holomorphic function vanishes
+> throughout an open subset of the complex plane,
+> then it must be constant on any connected component of that set.
+
+{% proof %}
+{% endproof %}
diff --git a/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md b/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md
new file mode 100644
index 0000000..ccdd0ea
--- /dev/null
+++ b/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.md
@@ -0,0 +1,102 @@
+---
+title: Cauchy's Integral Formula
+parent: One Complex Variable
+grand_parent: Complex Analysis
+nav_order: 3
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .theorem-title }
+> {{ page.title }}
+>
+> Let $f : G \to \CC$ be a function holomorphic in an open subset $G \subset \CC$.
+> Let $\gamma$ be a contour in $G$ such that the interior of $\gamma$ is contained in $G$.
+> Then for any point $a$ in the interior of $\gamma$,
+>
+> $$
+> f(a) = \frac{1}{2 \pi i} \int_{\gamma} \frac{f(z)}{z-a} \, dz.
+> $$
+> {: .katex-display .mb-0 }
+
+{% proof %}
+{% endproof %}
+
+{: .theorem-title }
+> {{ page.title }} (Generalization)
+> {: #cauchys-integral-formula-generalized }
+>
+> Let $f : G \to \CC$ be a function holomorphic in an open subset $G \subset \CC$.
+> Then the $n$th derivative $f^{(n)}$ exists for every $n \in \NN$.
+> If $\gamma$ is a contour in $G$ such that the interior of $\gamma$ is contained in $G$,
+> then for any point $a$ in the interior of $\gamma$,
+>
+> $$
+> f^{(n)} (a) = \frac{n!}{2 \pi i} \int_{\gamma} \frac{f(z)}{(z-a)^{n+1}} \, dz.
+> $$
+> {: .katex-display .mb-0 }
+
+{% proof %}
+{% endproof %}
+
+The last formula may be rewritten as
+
+$$
+\int_{\gamma} \frac{f(z)}{(z-a)^n} \, dz = \frac{2 \pi i}{(n-1)!} f^{(n-1)}(a)
+$$
+
+and is often used to compute the integral.
+
+## Many Consequences
+
+{: .theorem-title }
+> Cauchy's Estimate
+> {: #cauchys-estimate }
+>
+> Let $f$ be holomorphic on an open set containing the disc with center $a$ and radius $r>0$.
+> Then
+>
+> $$
+> \norm{f^{(n)}(a)} \le \frac{n!}{r^n} \sup_{\abs{z-a} = r} \norm{f(z)} \qquad \forall n \in \NN.
+> $$
+> {: .katex-display .mb-0 }
+
+{% proof %}
+From [{{ page.title }}](#cauchys-integral-formula-generalized)
+for the circular contour around $a$ with radius $r$ we obtain
+
+$$
+\begin{aligned}
+\norm{f^{(n)}(a)} &\le \frac{n!}{2\pi} \sup_{\abs{z-a} = r} \norm{f(z)} \, \int_{\abs{z-a} = r} \frac{dz}{\abs{z-a}^{n+1}}.
+\end{aligned}
+$$
+
+Note that the supremum is finite (and is attained),
+because $f$ is continuous and the circle is compact.
+Clearly, the integral evaluates to $2 \pi r / r^{n+1}$
+and the right hand side of the inequality reduces to the desired expression.
+{% endproof %}
+
+---
+
+Recall that an *entire* function is a holomorphic function that is defined everywhere in the complex plane.
+
+{: .theorem-title }
+> Liouville's Theorem
+> {: #liouvilles-theorem }
+>
+> Every bounded entire function is constant.
+
+{% proof %}
+Consider an entire function $f$ and assume that $\norm{f(z)} \le M$ for all $z \in \CC$ and some $M > 0$.
+Since $f$ is holomorphic on the whole plane, we may make
+[Cauchy's Estimate](#cauchys-estimate)
+for all disks centered at any point $a \in \CC$ and with any radius $r>0$.
+For the first derivative, we have $\norm{f'(a)} \le M/r$, which tends to $0$ for $r \to \infty$.
+Hence $f' = 0$ in the whole plane. This
+[implies](/pages/complex-analysis/one-complex-variable/basics.html#holomorphic-function-is-constant-if-derivative-vanishes)
+that $f$ is constant.
+{% endproof %}
+
+---
diff --git a/pages/complex-analysis/one-complex-variable/cauchys-theorem.md b/pages/complex-analysis/one-complex-variable/cauchys-theorem.md
new file mode 100644
index 0000000..15412bc
--- /dev/null
+++ b/pages/complex-analysis/one-complex-variable/cauchys-theorem.md
@@ -0,0 +1,39 @@
+---
+title: Cauchy's Theorem
+parent: One Complex Variable
+grand_parent: Complex Analysis
+nav_order: 2
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .theorem-title }
+> {{ page.title }} (Homotopy Version)
+>
+> Let $G$ be a connected open subset of the complex plane.
+> Let $f : G \to \CC$ be a holomorphic function.
+> If $\gamma_0$, $\gamma_1$ are homotopic closed curves in $G$, then
+>
+> $$
+> \int_{\gamma_0} \! f(z) \, dz =
+> \int_{\gamma_1} \! f(z) \, dz
+> $$
+>
+> If $\gamma$ is a null-homotopic closed curve in $G$, then
+>
+> $$
+> \int_{\gamma} f(z) \, dz = 0
+> $$
+
+{% proof %}
+{% endproof %}
+
+{{ page.title }} has a converse:
+
+{: .theorem-title }
+> Morera's Theorem
+>
+> Let $G \subset \CC$ be open and let $f : G \to \CC$ be a continuous function.
+> If $\int_{\gamma} f(z) \, dz = 0$ for every contour $\gamma$ contained in $G$,
+> then $f$ is holomorphic in $G$.
diff --git a/pages/complex-analysis/one-complex-variable/index.md b/pages/complex-analysis/one-complex-variable/index.md
new file mode 100644
index 0000000..4942ff8
--- /dev/null
+++ b/pages/complex-analysis/one-complex-variable/index.md
@@ -0,0 +1,9 @@
+---
+title: One Complex Variable
+parent: Complex Analysis
+nav_order: 1
+has_children: true
+# cspell:words
+---
+
+# {{ page.title }}
diff --git a/pages/complex-analysis/one-complex-variable/power-series.md b/pages/complex-analysis/one-complex-variable/power-series.md
new file mode 100644
index 0000000..0147f31
--- /dev/null
+++ b/pages/complex-analysis/one-complex-variable/power-series.md
@@ -0,0 +1,62 @@
+---
+title: Power Series
+parent: One Complex Variable
+grand_parent: Complex Analysis
+nav_order: 1
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .definition-title }
+> Definition ({{ page.title }})
+>
+> Let $X$ be a complex Banach space.
+> A *power series* (with values in $X$) is an infinite series of the form
+>
+>
+> $$
+> \sum_{n=0}^{\infty} x_n (z - a)^n = x_0 + x_1 (z-a) + x_2 (z-a)^2 + \cdots,
+> $$
+>
+> where $x_n \in X$ is the *$n$th coefficient*,
+> $z$ is a complex variable and
+> $a$ is the *center* of the series.
+
+{: .lemma }
+> Suppose the Banach space valued power series $\sum_{n=0}^{\infty} x_n (z - a)^n$ converges for $z = a + w$.
+> Then it converges absolutely for all $z$ with $\abs{z-a} < \abs{w}$.
+
+{% proof %}
+TODO
+{% endproof %}
+
+{: .theorem }
+> Suppose $\sum_{n=0}^{\infty} x_n (z - a)^n$ is a Banach space valued power series.
+> Then either
+>
+> - the series converges only for $z=a$ (formally $R=0$), or
+> - there exists a number $0<R<\infty$ such that
+> the series converges absolutely whenever $\abs{z-a} < R$
+> and diverges whenever $\abs{z-a} > R$, or
+> - the series converges absolutely for all $z \in \CC$ (formally $R=\infty$).
+>
+> The number $R \in [0,\infty]$ is called the *radius of convergence* of the power series.
+
+{% proof %}
+TODO
+{% endproof %}
+
+{: .theorem-title }
+> Cauchy–Hadamard Formula
+>
+> Let $\sum_{n=0}^{\infty} x_n (z - a)^n$ be a Banach space valued power series
+> with radius of convergence $R$. Then
+>
+> $$
+> \frac{1}{R} = \limsup_{n \to \infty} \norm{x_n}^{1/n}.
+> $$
+
+{% proof %}
+TODO
+{% endproof %}
diff --git a/pages/complex-analysis/one-complex-variable/the-calculus-of-residues.md b/pages/complex-analysis/one-complex-variable/the-calculus-of-residues.md
new file mode 100644
index 0000000..b49cdf4
--- /dev/null
+++ b/pages/complex-analysis/one-complex-variable/the-calculus-of-residues.md
@@ -0,0 +1,60 @@
+---
+title: The Calculus of Residues
+parent: One Complex Variable
+grand_parent: Complex Analysis
+nav_order: 4
+# cspell:words
+#published: false
+---
+
+# {{ page.title }}
+
+{: .definition-title }
+> Definition (Residue)
+>
+> TODO
+
+Calculation of Residues
+
+If $f$ has a simple pole at $c$, then
+$\Res(f,c) = \lim_{z \to c} (z-c) f(z)$.
+
+If $f$ has a pole of order $k$ at $c$, then
+
+$$
+\Res(f,c) = \frac{1}{(k-1)!} g^{(k-1)}(c), \quad \text{where} \ g(z) = (z-c)^k f(z).
+$$
+
+If $g$ and $h$ are holomorphic near $c$ and $h$ has a simple zero at $c$,
+then $f = g/h$ has a simple pole at $c$ and
+
+$$
+\Res(f,c) = \frac{g(c)}{h'(c)}
+$$
+
+
+
+
+{: .theorem-title }
+> Residue Theorem (Basic Version)
+> {: #residue-theorem-basic-version }
+>
+> Let $f$ be a function meromorphic in an open subset $G \subset \CC$.
+> Let $\gamma$ be a contour in $G$ such that
+> the interior of $\gamma$ is contained in $G$
+> and contains finitely many poles $c_1, \ldots, c_n$ of $f$.
+> Then
+>
+>
+> $$
+> \int_{\gamma} f(z) \, dz = 2 \pi i \sum_{k=1}^n \Res(f,c_k)
+> $$
+> {: .katex-display .mb-0 }
+
+{% proof %}
+{% endproof %}
+
+TODO
+- argument principle
+- Rouché's theorem
+- winding number
diff --git a/pages/complex-analysis/several-complex-variables/edge-of-the-wedge.md b/pages/complex-analysis/several-complex-variables/edge-of-the-wedge.md
new file mode 100644
index 0000000..5adc3f6
--- /dev/null
+++ b/pages/complex-analysis/several-complex-variables/edge-of-the-wedge.md
@@ -0,0 +1,18 @@
+---
+title: Edge of the Wedge
+parent: Several Complex Variables
+grand_parent: Complex Analysis
+nav_order: 1
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .theorem-title }
+> {{ page.title }}
+> {: #{{ page.title | slugify }} }
+>
+> ...
+
+{% proof %}
+{% endproof %}
diff --git a/pages/complex-analysis/several-complex-variables/index.md b/pages/complex-analysis/several-complex-variables/index.md
new file mode 100644
index 0000000..49763d5
--- /dev/null
+++ b/pages/complex-analysis/several-complex-variables/index.md
@@ -0,0 +1,12 @@
+---
+title: Several Complex Variables
+parent: Complex Analysis
+nav_order: 2
+has_children: true
+# cspell:words
+---
+
+# {{ page.title }}
+
+TODO
+- Edge of the Wedge Theorem
diff --git a/pages/complex-analysis/weak-and-strong-analyticity.md b/pages/complex-analysis/weak-and-strong-analyticity.md
new file mode 100644
index 0000000..7db1dbf
--- /dev/null
+++ b/pages/complex-analysis/weak-and-strong-analyticity.md
@@ -0,0 +1,18 @@
+---
+title: Weak and Strong Analyticity
+parent: Complex Analysis
+nav_order: 3
+published: false
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .definition-title }
+> {{ page.title }}
+> {: #{{ page.title | slugify }} }
+>
+> ...
+
+{% proof %}
+{% endproof %}
diff --git a/pages/distribution-theory/definitions.md b/pages/distribution-theory/definitions.md
new file mode 100644
index 0000000..a800e03
--- /dev/null
+++ b/pages/distribution-theory/definitions.md
@@ -0,0 +1,9 @@
+---
+title: Definitions
+parent: Distribution Theory
+nav_order: 10
+# cspell:words
+published: false
+---
+
+# {{ page.title }}
diff --git a/pages/distribution-theory/index.md b/pages/distribution-theory/index.md
new file mode 100644
index 0000000..b4b50a8
--- /dev/null
+++ b/pages/distribution-theory/index.md
@@ -0,0 +1,26 @@
+---
+title: Distribution Theory
+nav_order: 3
+has_children: true
+has_toc: false
+published: true
+---
+
+# {{ page.title }}
+
+As usual, let $\mathcal{S}$ denote the space of Schwartz test functions on $\RR^n$.
+
+{: .definition-title }
+> Definition (Operator Valued Distribution)
+>
+> Let $\hilb{H}$ be a Hilbert space.
+> An *operator valued tempered distribution* $\Phi$ (on $\RR^n$)
+> is a mapping that associates to each test function $f \in \mathcal{S}$
+> an unbounded linear operator $\Phi(f)$ in $\hilb{H}$ such that
+> {: .mb-0 }
+>
+> {: .my-0 }
+> - there is a dense linear subspace $\mathcal{D}$ of $\hilb{H}$ that
+> is contained in the domain of all the $\Phi(f)$
+> - for every fixed pair of vectors $\phi, \psi \in \hilb{D}$
+> the mapping $f \mapsto \innerp{\phi}{\Phi(f) \psi}$ is a tempered distribution.
diff --git a/pages/distribution-theory/sobolev-theory.md b/pages/distribution-theory/sobolev-theory.md
new file mode 100644
index 0000000..931731f
--- /dev/null
+++ b/pages/distribution-theory/sobolev-theory.md
@@ -0,0 +1,9 @@
+---
+title: Sobolev Theory
+parent: Distribution Theory
+nav_order: 10
+# cspell:words
+published: false
+---
+
+# {{ page.title }}
diff --git a/pages/functional-analysis-basics/banach-alaoglu-theorem.md b/pages/functional-analysis-basics/banach-alaoglu-theorem.md
new file mode 100644
index 0000000..59e4a92
--- /dev/null
+++ b/pages/functional-analysis-basics/banach-alaoglu-theorem.md
@@ -0,0 +1,19 @@
+---
+title: Banach–Alaoglu Theorem
+parent: Functional Analysis Basics
+nav_order: 3
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .theorem-title }
+> {{ page.title }}
+> {: #{{ page.title | slugify }} }
+>
+> The closed unit ball in the dual of a normed space is weak\* compact.
+
+{% proof %}
+{% endproof %}
+
+## Generalization: Alaoglu–Bourbaki
diff --git a/pages/functional-analysis-basics/compact-operators.md b/pages/functional-analysis-basics/compact-operators.md
new file mode 100644
index 0000000..b114c24
--- /dev/null
+++ b/pages/functional-analysis-basics/compact-operators.md
@@ -0,0 +1,44 @@
+---
+title: Compact Operators
+parent: Functional Analysis Basics
+nav_order: 4
+published: false
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .definition-title }
+> Definition (Compact Linear Operator)
+> {: #compact-operator }
+>
+> A linear operator $T : X \to Y$,
+> where $X$ and $Y$ are normed spaces,
+> is said to be a *compact linear operator*,
+> if for every bounded subset $M \subset X$
+> the image $TM$ is relatively compact in $Y$.
+
+{: .proposition-title }
+> Proposition (Characterisation of Compactness)
+>
+> Let $X$ and $Y$ be normed spaces.
+> A linear operator $T : X \to Y$ is compact if and only if
+> for every bounded sequence $(x_n)$ in $X$
+> the image sequence $(Tx_n)$ in $Y$ has a convergent subseqence.
+
+{: .proposition-title }
+> Every compact linear operator is bounded.
+
+{: .proposition-title }
+> Proposition (Compactness of Zero and Identity)
+>
+> The zero operator on any normed space is compact.
+> The indentity operator on a normed space $X$ is compact if and only if $X$ has finite dimension.
+
+{: .proposition-title }
+> Proposition (The Space of Compact Linear Operators)
+>
+> The set $C(X,Y)$ of compact linear operator from a normed space $X$ into a normed space $Y$
+> form a linear subspace of the space $B(X,Y)$ of bounded linear operators from $X$ into $Y$.
+> If $Y$ is a Banach space, then $C(X,Y)$ is a closed linear subspace of the Banach space
+> $B(X,Y)$ and hence itself a Banach space.
diff --git a/pages/functional-analysis-basics/index.md b/pages/functional-analysis-basics/index.md
new file mode 100644
index 0000000..1b7fd69
--- /dev/null
+++ b/pages/functional-analysis-basics/index.md
@@ -0,0 +1,11 @@
+---
+title: Functional Analysis Basics
+nav_order: 3
+has_children: true
+---
+
+# {{ page.title }}
+
+## Recommended Textbooks
+
+{% bibliography --file functional-analysis-basics %}
diff --git a/pages/functional-analysis-basics/reflexive-spaces.md b/pages/functional-analysis-basics/reflexive-spaces.md
new file mode 100644
index 0000000..dee0e55
--- /dev/null
+++ b/pages/functional-analysis-basics/reflexive-spaces.md
@@ -0,0 +1,123 @@
+---
+title: Reflexive Spaces
+parent: Functional Analysis Basics
+nav_order: 2
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .definition-title }
+> Definition (Canonical Embedding)
+>
+> Let $X$ be a normed space.
+> The mapping
+>
+> $$
+> C : X \longrightarrow X'', \quad x \mapsto g_x,
+> $$
+>
+> where the functional $g_x$ on $X'$ is defined by
+>
+> $$
+> g_x(f) = f(x) \quad \text{for $f \in X'$,}
+> $$
+>
+> is called the *canonical embedding* of $X$ into its bidual $X''$.
+
+{: .lemma }
+> The canonical embedding $C : X \to X''$ of a normed space into its bidual
+> is well-defined and an embedding of normed spaces.
+
+{% proof %}
+{% endproof %}
+
+In particular, $C$ is isometric, hence injective.
+
+{: .definition-title }
+> Definition (Reflexivity)
+>
+> A normed space is said to be *reflexive*
+> if the canonical embedding into its bidual
+> is surjective.
+
+If a normed space $X$ is reflexive,
+then $X$ is isomorphic with $X''$, its bidual.
+James gives a counterexample for the converse statement.
+
+{: .theorem }
+> If a normed space is reflexive,
+> then it is complete; hence a Banach space.
+
+{% proof %}
+{% endproof %}
+
+{: .theorem }
+> If a normed space $X$ is reflexive,
+> then the weak and weak$^*$ topologies on $X'$ agree.
+
+{% proof %}
+By definition, the weak and weak$^*$ topologies on $X'$
+are the initial topologies induced by the sets of functionals
+$X''$ and $C(X)$, respectively.
+Since $X$ is reflexive, those sets are equal.
+{% endproof %}
+
+The converse is true as well. Proof: TODO
+
+{: .theorem }
+> If a normed space $X$ is reflexive,
+> then its dual $X'$ is reflexive.
+
+{% proof %}
+Since $X$ is reflexive,
+the canonical embedding
+
+$$
+C : X \longrightarrow X'', \quad C(x)(f) = f(x), \quad x \in X, f \in X',
+$$
+
+is an isomorphism.
+Therefore, the the dual map
+
+$$
+C' : X''' \longrightarrow X', \quad C'(h)(x) = h(C(x)), \quad x \in X, h \in X''',
+$$
+
+is an isomorphism as well.
+A priori, it is not clear how $C'$ is related to
+the canonical embedding
+
+$$
+D : X' \longrightarrow X''', \quad D(f)(g) = g(f), \quad f \in X', g \in X''.
+$$
+
+To show that $D$ is surjective,
+consider any element $h$ in $X'''$.
+We claim that $h=D(f)$ with $f=C'(h)$.
+Let $g$ be any element of $X''$.
+It is of the form $g=C(x)$ with $x \in X$ unique, because $X$ is reflexive.
+We have
+
+$$
+h(g) = h(C(x)) = C'(h)(x) = f(x)
+$$
+
+by the definition of $C'$.
+On the other hand,
+
+$$
+D(f)(g) = g(f) = C(x)(f) = f(x)
+$$
+
+by the definitions of $D$ and $C$.
+This shows that $D$ is surjective, hence $X'$ is reflexive.
+In fact, we have shown more: $D = (C')^{-1}$.
+{% endproof %}
+
+{: .theorem }
+> Every finite-dimensional normed space is reflexive.
+>
+
+{: .theorem }
+> Every Hilbert space is reflexive.
diff --git a/pages/functional-analysis-basics/the-fundamental-four/closed-graph-theorem.md b/pages/functional-analysis-basics/the-fundamental-four/closed-graph-theorem.md
new file mode 100644
index 0000000..f8b8254
--- /dev/null
+++ b/pages/functional-analysis-basics/the-fundamental-four/closed-graph-theorem.md
@@ -0,0 +1,31 @@
+---
+title: Closed Graph Theorem
+parent: The Fundamental Four
+grand_parent: Functional Analysis Basics
+nav_order: 4
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .theorem-title }
+> {{ page.title }}
+> {: #{{ page.title | slugify }} }
+>
+> An (everywhere-defined) linear operator between Banach spaces is bounded
+> iff its graph is closed.
+
+We prove a slightly more general version:
+
+{: .theorem-title }
+> {{ page.title }}
+> {: #{{ page.title | slugify }}-variant }
+>
+> Let $X$ and $Y$ be Banach spaces
+> and $T : \dom{T} \to Y$ a linear operator
+> with domain $\dom{T}$ closed in $X$.
+> Then $T$ is bounded if and only if
+> its graph $\graph{T}$ is closed.
+
+{% proof %}
+{% endproof %}
diff --git a/pages/functional-analysis-basics/the-fundamental-four/hahn-banach-theorem.md b/pages/functional-analysis-basics/the-fundamental-four/hahn-banach-theorem.md
new file mode 100644
index 0000000..9d21d41
--- /dev/null
+++ b/pages/functional-analysis-basics/the-fundamental-four/hahn-banach-theorem.md
@@ -0,0 +1,147 @@
+---
+title: Hahn–Banach Theorem
+parent: The Fundamental Four
+grand_parent: Functional Analysis Basics
+nav_order: 1
+---
+
+# {{ page.title }}
+
+In fact, there are multiple theorems and corollaries
+which bear the name Hahn–Banach.
+All have in common that
+they guarantee the existence of linear functionals
+with various additional properties.
+
+{: .definition-title }
+> Definition (Sublinear Functional)
+>
+> A functional $p$ on a real vector space $X$
+> is called *sublinear* if it is
+> {: .mb-0 }
+>
+> {: .mt-0 .mb-0 }
+> - *positive-homogenous*, that is
+> {: .mt-0 .mb-0 }
+>
+> $$
+> p(\alpha x) = \alpha \, p(x) \qquad \forall \alpha \ge 0, \ \forall x \in X,
+> $$
+>
+> - and satisfies the *triangle inequality*
+> {: .mt-0 .mb-0 }
+>
+> $$
+> p(x+y) \le p(x) + p(y) \qquad \forall x,y \in X.
+> $$
+> {: .katex-display .mb-0 }
+
+If $p$ is a sublinear functional,
+then $p(0)=0$ and $p(-x) \ge -p(x)$ for all $x$.
+
+Every norm on a real vector space is a sublinear functional.
+
+{: .theorem-title }
+> {{ page.title }} (Basic Version)
+>
+> Let $p$ be a sublinear functional on a real vector space $X$.
+> Then there exists a linear functional $f$ on $X$ satisfying
+> $f(x) \le p(x)$ for all $x \in X$.
+
+## Extension Theorems
+
+{: .theorem-title }
+> {{ page.title }} (Extension, Real Vector Spaces)
+>
+> Let $p$ be a sublinear functional on a real vector space $X$.
+> Let $f$ be a linear functional
+> which is defined on a linear subspace $Z$ of $X$
+> and satisfies
+>
+> $$
+> f(x) \le p(x) \qquad \forall x \in Z.
+> $$
+>
+> Then $f$ has a linear extension $\tilde{f}$ to $X$ such that
+>
+> $$
+> \tilde{f}(x) \le p(x) \qquad \forall x \in X.
+> $$
+
+{% proof %}
+{% endproof %}
+
+{: .definition-title }
+> Definition (Semi-Norm)
+>
+> We call a real-valued functional $p$ on a real or complex vector space $X$
+> a *semi-norm* if it is
+> {: .mb-0 }
+>
+> {: .mt-0 .mb-0 }
+> - *absolutely homogenous*, that is
+> {: .mt-0 .mb-0 }
+>
+> $$
+> p(\alpha x) = \abs{\alpha} \, p(x) \qquad \forall \alpha \in \KK \ \forall x \in X,
+> $$
+> - and satisfies the *triangle inequality*
+> {: .mt-0 .mb-0 }
+>
+> $$
+> p(x+y) \le p(x) + p(y) \qquad \forall x,y \in X.
+> $$
+> {: .katex-display .mb-0 }
+
+{: .theorem-title }
+> {{ page.title }} (Extension, Real and Complex Vector Spaces)
+>
+> Let $p$ be a semi-norm on a real or complex vector space $X$.
+> Let $f$ be a linear functional
+> which is defined on a linear subspace $Z$ of $X$
+> and satisfies
+>
+> $$
+> \abs{f(x)} \le p(x) \qquad \forall x \in Z.
+> $$
+>
+> Then $f$ has a linear extension $\tilde{f}$ to $X$ such that
+>
+> $$
+> \abs{\tilde{f}(x)} \le p(x) \qquad \forall x \in X.
+> $$
+
+{: .theorem-title }
+> {{ page.title }} (Extension, Normed Spaces)
+>
+> Let $X$ be a real or complex normed space
+> and let $f$ be a bounded linear functional
+> defined on a linear subspace $Z$ of $X$.
+> Then $f$ has a bounded linear extension $\tilde{f}$ to $X$ such that $\norm{\tilde{f}} = \norm{f}$.
+
+{% proof %}
+We apply the preceding theorem with $p(x) = \norm{f} \norm{x}$
+and obtain a linear extension $\tilde{f}$ of $f$ to $X$
+satisfying $\abs{\tilde{f}(x)} \le \norm{f} \norm{x}$ for all $x \in X$.
+This implies that $\tilde{f}$ is bounded and $\norm{\tilde{f}} \le \norm{f}$.
+We have $\norm{\tilde{f}} \ge \norm{f}$, because $\tilde{f}$ extends $f$.
+{% endproof %}
+
+Corollaries
+
+Important consequence: canonical embedding into bidual
+
+## Separation Theorems
+
+{: .theorem-title }
+> {{ page.title }} (Separation, Point and Closed Subspace)
+>
+> Suppose $Z$ is a closed subspace
+> of a normed space $X$ and $x$ lies in $X \setminus Z$.
+> Then there exists a bounded linear functional on $X$
+> which vanishes on $Z$ but has a nonzero value at $x$.
+
+{: .theorem-title }
+> {{ page.title }} (Separation, Convex Sets)
+>
+> TODO
diff --git a/pages/functional-analysis-basics/the-fundamental-four/index.md b/pages/functional-analysis-basics/the-fundamental-four/index.md
new file mode 100644
index 0000000..e814571
--- /dev/null
+++ b/pages/functional-analysis-basics/the-fundamental-four/index.md
@@ -0,0 +1,8 @@
+---
+title: The Fundamental Four
+parent: Functional Analysis Basics
+nav_order: 2
+has_children: true
+---
+
+# {{ page.title }}
diff --git a/pages/functional-analysis-basics/the-fundamental-four/open-mapping-theorem.md b/pages/functional-analysis-basics/the-fundamental-four/open-mapping-theorem.md
new file mode 100644
index 0000000..53da008
--- /dev/null
+++ b/pages/functional-analysis-basics/the-fundamental-four/open-mapping-theorem.md
@@ -0,0 +1,109 @@
+---
+title: Open Mapping Theorem
+parent: The Fundamental Four
+grand_parent: Functional Analysis Basics
+nav_order: 3
+# cspell:words surjective bijective
+---
+
+# {{ page.title }}
+
+Recall that a mapping $T : X \to Y$,
+where $X$ and $Y$ are topological spaces,
+is called *open* if the image under $T$ of each open set of $X$
+is open in $Y$.
+
+{: .theorem-title }
+> {{ page.title }}
+> {: #{{ page.title | slugify }} }
+>
+> A bounded linear operator between Banach spaces is open
+> if and only if it is surjective.
+
+{% proof %}
+Let $X$ and $Y$ be Banach spaces
+and let $T : X \to Y$ be a bounded linear operator.
+Let $B_X$ and $B_Y$ denote the open unit balls in $X$ and $Y$, respectively.
+
+First, suppose that $T$ is surjective.
+The balls $m B_X$, $m \in \NN$, cover $X$.
+Since $T$ is surjective,
+their images $mTB_X$ cover $Y$.
+This remains true, if we take closures:
+$\bigcup \overline{mTB_X} = Y$.
+Hence, we have written the space $Y$,
+which is assumed to have a complete norm,
+as the union of countably many closed sets. It follows form the
+[Baire Category Theorem]({% link pages/general-topology/baire-spaces.md %})
+that $\overline{mTB_X}$ has nonempty interior for some $m$.
+Thus there are $q \in Y$ and $\alpha > 0$
+such that $q + \alpha B_Y \subset \overline{mTB_X}$.
+Choose a $p \in X$ with $Tp=q$.
+It is a well known fact, that in a normed space
+the translation by a vector and the multiplication with a nonzero scalar
+are homeomorphisms and thus compatible with taking the closure.
+We conclude $\alpha B_Y \subset \overline{T(mB_X-q)}$.
+Since $mB_X-q$ is a bounded set,
+it is contained in a ball $\beta B_X$ for some $\beta > 0$.
+Thus, $\alpha B_Y \subset \overline{T \beta B_X} = \beta \overline{TB_X}$.
+With $\gamma := \alpha / \beta > 0$ we obtain $\gamma B_Y \subset \overline{TB_X}$.
+
+Clearly, every $y \in \gamma B_Y$ is the limit of a sequence $(Tx_n)$,
+where $x_n \in B_X$.
+However, the sequence $(x_n)$ *may not converge*!
+We show that it is possible to find a *convergent* sequence $(s_n)$ in $4B_X$
+such that $Ts_n \to y$.
+To construct $(s_n)$, we recursively define a sequence $(y_k)$
+with $y_k \in 2^{-k} \gamma B_Y$ for $k \in \NN_0$.
+The sequence starts with $y_0 := y \in 2^0 \gamma B_Y$.
+Given $y_k \in 2^{-k} \gamma B_Y$, one has $y_k \in \overline{T 2^{-k} B_X}$.
+By the definition of closure, there exists a $x_k \in 2^{-k} B_X$
+such that $Tx_k$ lies in the open $2^{-(k+1)} \gamma$-ball about $y_k$.
+This means that $y_{k+1} := y_k - Tx_k \in 2^{-(k+1)}\gamma B_Y$.
+Now define $s_n$ as the $n$-th partial sum of the series $\sum_{k=0}^{\infty} x_k$.
+The series converges,
+because it converges absolutely (Here we use the completeness of $X$).
+The latter is true because $\sum \norm{x_k} \le \sum 2^{-k} = 3$.
+This also shows that each $s_n$ and the limit $x := \lim s_n$ lie in $4B_X$.
+The auxiliary sequence $(y_n)$ converges to $0$ by construction.
+Therefore, in the limit $n \to \infty$
+
+$$
+Ts_n = \sum_{k=0}^{n} Tx_k = \sum_{k=0}^{n} y_k - y_{k+1}
+= y_0 - y_{n+1} \to y_0 = y,
+$$
+
+as desired.
+It follows from the continuity of $T$ that $Ts_n \to Tx$, thus $Tx = y$.
+
+In the preceding paragraph it was proven that $\gamma B_Y \subset 4TB_X$.
+Hence, $\delta B_Y \subset TB_X$ where $\delta := \gamma/4$.
+To show that $T$ is open, consider any open set $U \subset X$.
+If $y$ lies in $TU$, there exists a $x \in U$ such that $Tx=y$.
+Since $U$ is open, there is an $\epsilon > 0$ such that $x+\epsilon B_X \subset U$.
+Applying $T$, we find $y + \epsilon TB_X \subset TU$.
+Combine with $\delta B_Y \subset TB_X$ to see $y + \epsilon \delta B_X \subset TU$.
+Hence, $TU$ is open.
+This shows that $T$ is indeed an open mapping.
+
+Conversely, suppose that $T$ is open. TODO
+{% endproof %}
+
+---
+
+XXX injective
+For a bijective mapping between topological spaces, to say that it is open,
+is equivalent to saying that its inverse is continuous.
+The inverse of a bijective linear map between normed spaces is automatically linear
+and thus continuous if and only if it is bounded.
+As a corollary to the {{ page.title }} we obtain the following:
+
+{: .corollary-title }
+> Bounded Inverse Theorem
+> {: #bounded-inverse-theorem }
+>
+> If a bounded linear operator between Banach spaces is bijective,
+> then its inverse is bounded.
+XXX relax to injective
+
+Also known as *Inverse Mapping Theorem*.
diff --git a/pages/functional-analysis-basics/the-fundamental-four/uniform-boundedness-theorem.md b/pages/functional-analysis-basics/the-fundamental-four/uniform-boundedness-theorem.md
new file mode 100644
index 0000000..13460da
--- /dev/null
+++ b/pages/functional-analysis-basics/the-fundamental-four/uniform-boundedness-theorem.md
@@ -0,0 +1,76 @@
+---
+title: Uniform Boundedness Theorem
+parent: The Fundamental Four
+grand_parent: Functional Analysis Basics
+nav_order: 2
+description: >
+ The
+# spellchecker:words preimages pointwise
+---
+
+# {{ page.title }}
+
+Also known as *Uniform Boundedness Principle* and *Banach–Steinhaus Theorem*.
+
+{: .theorem-title }
+> {{ page.title }}
+> {: #{{ page.title | slugify }} }
+>
+> If $\mathcal{T}$ is a set of bounded linear operators
+> from a Banach space $X$ into a normed space $Y$ such that
+> $\braces{\norm{Tx} : T \in \mathcal{T}}$
+> is a bounded set for every $x \in X$, then
+> $\braces{\norm{T} : T \in \mathcal{T}}$
+> is a bounded set.
+
+{% proof %}
+For each $n \in \NN$ the set
+
+$$
+A_n = \bigcap_{T \in \mathcal{T}} \braces{x \in X : \norm{Tx} \le n}
+$$
+
+is closed, since it is the intersection
+of the preimages of the closed interval $[0,n]$
+under the continuous maps $x \mapsto \norm{Tx}$.
+Given any $x \in X$,
+the set $\braces{\norm{Tx} : T \in \mathcal{T}}$ is bounded by assumption.
+This means that there exists a $n \in \NN$
+such that $\norm{Tx} \le n$ for all $T \in \mathcal{T}$.
+In other words, $x \in A_n$.
+Thus we have show that $\bigcup A_n = X$.
+XXX Apart from the trivial case $X = \emptyset$,
+the union $\bigcup A_n$ has nonempty interior.
+Now, utilizing the completeness of $X$, the
+[Baire Category Theorem]({% link pages/general-topology/baire-spaces.md %})
+implies that there exists a $m \in \NN$ such that $A_m$ has nonempty interior.
+It follows that $A_m$ contains an open ball $B(y,\epsilon)$.
+
+To show that $\braces{\norm{T} : T \in \mathcal{T}}$ is bounded,
+let $z \in X$ with $\norm{z} \le 1$.
+Then $y+\epsilon z \in B(y,\epsilon)$.
+Using the reverse triangle inequality and the linearity of $T$, we find
+
+$$
+\epsilon \norm{Tz} \le \norm{Ty} + \norm{T(y + \epsilon z)} \le 2m.
+$$
+
+This proves $\norm{T} \le 2m/\epsilon$ for all $T \in \mathcal{T}$.
+{% endproof %}
+
+---
+
+In particular, for a sequence of operators $(T_n)$,
+if there are pointwise bounds $c_x$ such that
+
+$$
+\norm{T_n x} \le c_x \quad \forall n \in \NN, \forall x \in X,
+$$
+
+the theorem implies the existence of bound $c$ such that
+
+$$
+\norm{T_n} \le c \quad \forall n \in \NN.
+$$
+
+If $X$ is not complete, this may be false.
diff --git a/pages/general-topology/baire-spaces.md b/pages/general-topology/baire-spaces.md
new file mode 100644
index 0000000..6bd7d9f
--- /dev/null
+++ b/pages/general-topology/baire-spaces.md
@@ -0,0 +1,83 @@
+---
+title: Baire Spaces
+parent: General Topology
+nav_order: 1
+description: >
+ A Baire space is a topological space with the property that the intersection
+ of countably many dense open subsets is still dense. One version of the Baire
+ Category Theorem states that complete metric spaces are Baire spaces. We give
+ a self-contained proof of Baire's Category Theorem by contradiction.
+# spellchecker:words
+---
+
+# {{ page.title }}
+
+{: .definition }
+> A topological space is said to be a *Baire space*,
+> if any of the following equivalent conditions holds:
+> {: .mb-0 }
+>
+> - The intersection of countably many dense open subsets is still dense.
+> - The union of countably many closed subsets with empty interior has empty interior.
+> {: .mt-0 .mb-0 }
+
+Note that
+a set is dense in a topological space
+if and only if
+its complement has empty interior.
+
+Any sufficient condition
+for a topological space to be a Baire space
+constitutes a *Baire Category Theorem*,
+of which there are several.
+Here we give one
+that is commonly used in functional analysis.
+
+{: .theorem-title }
+> Baire Category Theorem #1
+> {: #baire-category-theorem }
+>
+> Every complete metric space is a Baire space.
+
+{% proof %}
+Let $X$ be a metric space
+with complete metric $d$.
+Suppose that $X$ is not a Baire space.
+Then there is a countable collection $\braces{U_n}$ of dense open subsets of $X$
+such that the intersection $U := \bigcap U_n$ is not dense in $X$.
+
+In a metric space, any nonempty open set contains an open ball.
+It is also true, that any nonempty open set contains a closed ball,
+since $\overline{B(y,\delta_1)} \subset B(y,\delta_2)$ if $\delta_1 < \delta_2$.
+
+We construct a sequence $(B_n)$ of open balls $B_n := B(x_n,\epsilon_n)$ satisfying
+
+$$
+\overline{B_{n+1}} \subset B_n \cap U_n \quad \epsilon_n < \tfrac{1}{n} \quad \forall n \in \NN,
+$$
+
+as follows: By hypothesis,
+the interior of $X \setminus U$ is not empty (otherwise $U$ would be dense in $X$),
+so we may choose an open ball $B_1$ with $\epsilon_1 < 1$
+such that $\overline{B_1} \subset X \setminus U$.
+Given $B_n$,
+the set $B_n \cap U_n$ is nonempty, because $U_n$ is dense in $X$,
+and it is open, because $B_n$ and $U_n$ are open.
+This allows us to choose an open ball $B_{n+1}$ as desired.
+
+Note that by construction $B_m \subset B_n$ for $m \ge n$,
+thus $d(x_m,x_n) < \epsilon_n < \tfrac{1}{n}$.
+Therefore, the sequence $(x_n)$ is Cauchy
+and has a limit point $x$ by completeness.
+In the limit $m \to \infty$, we obtain $d(x,x_n) \le \epsilon_n$ (strictness is lost),
+hence $x \in \overline{B_n}$ for all $n$.
+This shows that $x \in U_n$ for all $n$, that is $x \in U$.
+On the other hand, $x \in \overline{B_1} \subset X \setminus U$,
+in contradiction to the preceding statement.
+{% endproof %}
+
+{: .theorem-title }
+> Baire Category Theorem #2
+> {: #baire-category-theorem }
+>
+> Every compact Hausdorff space is a Baire space.
diff --git a/pages/general-topology/baire-spaces.md.txt b/pages/general-topology/baire-spaces.md.txt
new file mode 100644
index 0000000..eabe792
--- /dev/null
+++ b/pages/general-topology/baire-spaces.md.txt
@@ -0,0 +1,73 @@
+---
+title: Baire Spaces
+parent: General Topology
+nav_order: 1
+description: >
+ A Baire space is a topological space with the property that the intersection
+ of countably many dense open subsets is still dense. One version of the Baire
+ Category Theorem states that complete metric spaces are Baire spaces. We give
+ a self-contained proof of Baire's Category Theorem by contradiction.
+# spellchecker:words
+---
+
+#
+
+
+A topological space is said to be a *Baire space*,
+if any of the following equivalent conditions holds:
+>
+- The intersection of countably many dense open subsets is still dense.
+- The union of countably many closed subsets with empty interior has empty interior.
+
+
+Note that
+a set is dense in a topological space
+if and only if
+its complement has empty interior.
+
+Any sufficient condition
+for a topological space to be a Baire space
+constitutes a *Baire Category Theorem*,
+of which there are several.
+Here we give one
+that is commonly used in functional analysis.
+
+
+Baire Category Theorem
+
+>
+Complete metric spaces are Baire spaces.
+
+**Proof:**
+Let C-C-C be a metric space
+with complete metric D-D-D.
+Suppose that F-F-F is not a Baire space.
+Then there is a countable collection G-G-G of dense open subsets of B-B-B
+such that the intersection C-C-C is not dense in D-D-D.
+
+In a metric space, any nonempty open set contains an open ball.
+It is also true, that any nonempty open set contains a closed ball,
+since F-F-F if G-G-G.
+
+We construct a sequence B-B-B of open balls C-C-C satisfying
+
+V-V-V
+as follows: By hypothesis,
+the interior of D-D-D is not empty (otherwise F-F-F would be dense in G-G-G),
+so we may choose an open ball B-B-B with C-C-C
+such that D-D-D.
+Given F-F-F,
+the set G-G-G is nonempty, because B-B-B is dense in C-C-C,
+and it is open, because D-D-D and F-F-F are open.
+This allows us to choose an open ball G-G-G as desired.
+
+Note that by construction B-B-B for C-C-C,
+thus D-D-D.
+Therefore, the sequence F-F-F is Cauchy
+and has a limit point G-G-G by completeness.
+In the limit B-B-B, we obtain C-C-C (strictness is lost),
+hence D-D-D for all F-F-F.
+This shows that G-G-G for all B-B-B, that is C-C-C.
+On the other hand, D-D-D,
+in contradiction to the preceding statement.
+
diff --git a/pages/general-topology/compactness/basics.md b/pages/general-topology/compactness/basics.md
new file mode 100644
index 0000000..a1dded7
--- /dev/null
+++ b/pages/general-topology/compactness/basics.md
@@ -0,0 +1,43 @@
+---
+title: Basics
+parent: Compactness
+grand_parent: General Topology
+nav_order: 1
+published: false
+# cspell:words
+---
+
+# {{ page.title }} of Compact Spaces
+
+*Compact space* is short for compact topological space.
+
+{: .definition }
+> Suppose $X$ is a topological space.
+> A *covering* of $X$ is a collection $\mathcal{A}$
+> of subsets of $X$ such that
+> $\bigcup \mathcal{A} = X$.
+> A covering $\mathcal{A}$ of $X$ is called *open*
+> if each member of the collection $\mathcal{A}$
+> is open in $X$.
+> A covering $\mathcal{A}$ is called *finite*
+> the collection $\mathcal{A}$ is finite.
+> A *subcovering* of a covering $\mathcal{A}$ of $X$
+> is a subcollection $\mathcal{B}$ of $\mathcal{A}$
+> such that $\mathcal{B}$ is a covering of $X$.
+
+{: .definition }
+> A topological space $X$ is called *compact*
+> if every open covering of $X$
+> has a finite subcovering.
+
+{: .theorem }
+> Every closed subspace of a compact space is compact.
+
+{% proof %}
+{% endproof %}
+
+{: .theorem }
+> Every compact subspace of a Hausdorff space is closed.
+
+{% proof %}
+{% endproof %}
diff --git a/pages/general-topology/compactness/index.md b/pages/general-topology/compactness/index.md
new file mode 100644
index 0000000..60c29a0
--- /dev/null
+++ b/pages/general-topology/compactness/index.md
@@ -0,0 +1,9 @@
+---
+title: Compactness
+parent: General Topology
+nav_order: 1
+has_children: true
+# cspell:words
+---
+
+# {{ page.title }}
diff --git a/pages/general-topology/compactness/tychonoff-product-theorem.md b/pages/general-topology/compactness/tychonoff-product-theorem.md
new file mode 100644
index 0000000..2ae78e4
--- /dev/null
+++ b/pages/general-topology/compactness/tychonoff-product-theorem.md
@@ -0,0 +1,19 @@
+---
+title: Tychonoff Product Theorem
+parent: Compactness
+grand_parent: General Topology
+nav_order: 2
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .theorem-title }
+> {{ page.title }}
+> {: #{{ page.title | slugify }} }
+>
+> The product of (an arbitrary family of) compact spaces is compact.
+
+{% proof %}
+TODO
+{% endproof %}
diff --git a/pages/general-topology/index.md b/pages/general-topology/index.md
new file mode 100644
index 0000000..507c29a
--- /dev/null
+++ b/pages/general-topology/index.md
@@ -0,0 +1,11 @@
+---
+title: General Topology
+nav_order: 1
+has_children: true
+---
+
+# {{ page.title }}
+
+## Recommended Textbooks
+
+{% bibliography --file general-topology %}
diff --git a/pages/general-topology/jordan-curve-theorem.md b/pages/general-topology/jordan-curve-theorem.md
new file mode 100644
index 0000000..9da141e
--- /dev/null
+++ b/pages/general-topology/jordan-curve-theorem.md
@@ -0,0 +1,18 @@
+---
+title: Jordan Curve Theorem
+parent: General Topology
+nav_order: 1
+published: false
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .theorem-title }
+> {{ page.title }}
+> {: #{{ page.title | slugify }} }
+>
+> ...
+
+{% proof %}
+{% endproof %}
diff --git a/pages/operator-algebras/banach-algebras/index.md b/pages/operator-algebras/banach-algebras/index.md
new file mode 100644
index 0000000..2fb8f03
--- /dev/null
+++ b/pages/operator-algebras/banach-algebras/index.md
@@ -0,0 +1,259 @@
+---
+title: Banach Algebras
+parent: Operator Algebras
+nav_order: 1
+has_children: true
+has_toc: false
+---
+
+# {{ page.title }}
+
+{% definition Banach Algebra %}
+A *Banach algebra* $\mathcal{A}$ is a complex Banach space
+endowed with a binary operation $(x,y) \mapsto xy$, called *product*,
+that makes the underlying vector space into an associative algebra,
+and that satisfies
+
+$$
+\norm{xy} \le \norm{x} \norm{y} \quad \forall x,y \in \mathcal{A}.
+$$
+{% enddefinition %}
+
+The algebraic properties required of the product are explicitly:
+
+$$
+\begin{align*}
+x(y+y') &= xy + xy' &\quad
+(\lambda x)y &= \lambda (xy) &\quad
+(xy)z &= x(yz) \\
+(x+x')y &= xy + x'y &
+x(\lambda y) &= \lambda (xy)
+\end{align*}
+$$
+
+The topological property is sometimes described by saying
+that the norm is *submultiplicative*.
+
+{% definition Commutative Banach Algebra %}
+A Banach algebra $\mathcal{A}$ is said to be *commutative* (or *abelian*) if
+$xy = yx$ holds for all $x,y \in \mathcal{A}$.
+{% enddefinition %}
+
+{% definition Unital Banach Algebra %}
+An element $e$ of a Banach algebra $\mathcal{A}$ is called a *unit* (or an *identity*),
+if $\norm{e} = 1$ and $ex=x=xe$ for all $x \in \mathcal{A}$.
+We say that $\mathcal{A}$ is an *unital* Banach algebra, if $\mathcal{A}$ contains a unit.
+{% enddefinition %}
+
+It is easy to see that a Banach algebra has at most one unit.
+
+{: .proposition-title #neumann-series }
+> Proposition (Neumann Series)
+>
+> Let $\mathcal{A}$ be a unital Banach algebra
+> and let $x \in \mathcal{A}$ satisfy $\norm{x} < 1$.
+> Then $\mathbf{1}-x$ is invertible
+> and the inverse is given by the series
+>
+> $$
+> (\mathbf{1}-x)^{-1} = \sum_{n=0}^{\infty} x^n,
+> $$
+>
+> which converges absolutely in norm.
+> Moreover, we have the estimate
+>
+> $$
+> \norm{(\mathbf{1}-x)^{-1}} \le \frac{1}{1 - \norm{x}}.
+> $$
+> {: .katex-display .mb-0 }
+
+{% proof %}
+Since the Banach algebra norm is submultiplicative,
+we have $\norm{x^n} \le \norm{x}^n$ for all $n \in \NN$.
+This implies that the series $\sum \norm{x^n}$
+is majorized by the geometric series $\sum \norm{x}^n$,
+which is known to be convergent for $\norm{x} < 1$.
+It follows that the series $\sum x^n$ is absolutely convergent.
+Denote its limit by $s = \lim_{n \to \infty} s_n = \sum_{n=0}^{\infty} x$,
+where $s_n = \mathbf{1} + x + \cdots + x^n$ is the $n$th partial sum.
+Clearly,
+
+$$
+(\mathbf{1}-x) s_n = s_n (\mathbf{1}-x) = \mathbf{1} - x^{n+1}.
+$$
+
+In the limit $n \to \infty$ we obtain $(\mathbf{1}-x) s = s (\mathbf{1}-x) = \mathbf{1}$,
+because multiplication in a Banach algebra is continuous, and because $y^n \to 0$ when $\norm{y} < 1$.
+This proves that $s$ is the inverse of $\mathbf{1}-x$.
+
+The estimate follows from $\norm{s} \le \sum \norm{x}^n = 1 / (1 - \norm{x})$.
+{% endproof %}
+
+## The Spectrum
+
+{: .definition-title }
+> Definition (Spectrum, Resolvent Set)
+>
+> Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$.
+> {: .mb-0 }
+>
+> {: .my-0 }
+> - The *spectrum* of $x$ is the set $\sigma(x) = \lbrace\lambda \in \CC : x - \lambda$ is not invertible in $\mathcal{A}\rbrace$. \
+> The elements of $\sigma(x)$ are called *spectral values* of $x$.
+> - The *resolvent set* of $x$ is the set $\rho (x) = \CC \setminus \sigma(x)$. \
+> For $\lambda \in \rho(x)$ the *resolvent* of $x$ is the algebra element $R_{\lambda} = (\lambda - x)^{-1}$. \
+> The mapping $R : \rho(x) \to \mathcal{A}$, $\lambda \mapsto R_{\lambda}$, is called *resolvent map*.
+
+{% theorem %}
+Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$.
+If $\lambda$ lies in the resolvent set of $x$,
+then so do all complex numbers $\mu$ with the property that
+
+$$
+\abs{\lambda - \mu} < \frac{1}{\norm{(\lambda - x)^{-1}}}. \tag{$*$}
+$$
+
+For such $\mu$ the resolvent of $x$ is represented by the absolutely convergent power series
+
+$$
+(\mu - x)^{-1} = \sum_{n=0}^{\infty} (\mu - \lambda)^n (\lambda - x)^{-(n+1)}.
+$$
+{% endtheorem %}
+
+{% proof %}
+Let $\lambda$ be in the resolvent set of $x$.
+Then $\lambda - x$ is invertible and we have for all $\mu \in \CC$
+
+$$
+\mu - x = \bigl(\mathbf{1} - (\lambda - \mu) (\lambda - x)^{-1}\bigr) (\lambda - x).
+$$
+
+If $\mu$ satisfies condition ($*$), the first factor is invertible
+and the inverse is given by a [Neumann series](#neumann-series):
+
+$$
+\bigl(\mathbf{1} - (\lambda - \mu) (\lambda - x)^{-1}\bigr)^{-1}
+= \sum_{n=0}^{\infty} (\lambda - \mu)^n (\lambda - x)^{-n}.
+$$
+
+As a product of invertible algebra elements, $\mu - x$ must itself be invertible;
+the claimed formula for its inverse follows by an application of
+the rule $(ab)^{-1} = b^{-1} a^{-1}$ for invertible $a,b \in \mathcal{A}$.
+{% endproof %}
+
+{: .corollary #resolvent-set-is-open #spectrum-is-closed }
+> The resolvent set $\rho(x)$ is open and the spectrum $\sigma(x)$ is closed.
+
+{: .corollary #resolvent-map-is-analytic }
+> Suppose $x$ is an element of a unital Banach algebra $\mathcal{A}$.
+> The resolvent map
+>
+> $$
+> R : \rho(x) \longrightarrow \mathcal{A}, \quad \lambda \longmapsto R_{\lambda} = (\lambda - x)^{-1},
+> $$
+>
+> is (strongly) analytic.
+
+ ---
+
+{: .proposition #spectrum-is-not-empty }
+> Suppose $x$ is an element of a unital Banach algebra.
+> Then its spectrum $\sigma(x)$ is not empty.
+
+{% proof %}
+We assume that $\sigma(x)$ is empty
+and derive a contradiction.
+Observe that the resolvent map $R$ is defined on the whole complex plane.
+By [this corollary](#resolvent-map-is-analytic), $R$ is analytic, hence entire.
+Analytic functions are countinuous;
+therefore $R$ is bounded on the compact disk $\abs{\lambda} \le 2 \norm{x}$.
+For $\abs{\lambda} > 2 \norm{x}$ we may expand $R_{\lambda}$ into a [Neumann series](#neumann-series),
+
+$$
+R_{\lambda}
+= (\lambda - x)^{-1}
+= \lambda^{-1} (\mathbf{1} - \lambda^{-1} x)^{-1}
+= \lambda^{-1} \sum_{n=0}^{\infty} (\lambda^{-1} x)^n,
+$$
+
+and make the estimate
+
+$$
+\norm{R_{\lambda}}
+\le \abs{\lambda}^{-1} (1 - \norm{\lambda^{-1} x})^{-1}
+= (\abs{\lambda} - \norm{x})^{-1}
+< \norm{x}^{-1}.
+$$
+
+This shows that $R$ is a bounded entire function. Now
+[Liouville's Theorem](/pages/complex-analysis/one-complex-variable/cauchys-integral-formula.html#liouvilles-theorem)
+(for vector-valued functions) implies that $R$ is constant.
+This is contradictiory because XXX
+{% endproof %}
+
+{: .theorem-title }
+> Gelfand–Mazur Theorem
+>
+> Every Banach algebra in which all nonzero elements are invertible is isometrically isomorphic to $\CC$.
+
+{% proof %}
+For any Banach algebra $A$,
+the mapping $\varphi : \CC \to A$, $\lambda \mapsto \lambda \mathbf{1}$,
+is linear, multiplicative and isometric, hence injective.
+Let $x$ be any element of $A$.
+Since its
+[spectrum is not empty](/pages/operator-algebras/banach-algebras/index.html#spectrum-is-not-empty),
+there must exist a complex number $\lambda$
+such that $x - \lambda \mathbf{1}$ is not invertible.
+Now suppose that all nonzero elements of $A$ are invertible.
+Then necessarily $x - \lambda \mathbf{1} = 0$, or $x = \lambda \mathbf{1}$.
+This proves that the mapping $\varphi$ is also surjective
+and thus an isometric isomorphism.
+{% endproof %}
+
+Other ways of stating that
+all nonzero elements of a Banach algebra $\mathcal{A}$ are invertible
+include:
+{: .mb-0 }
+
+{: .mt-0 }
+- $\mathcal{A}$ is a division algebra.
+- The underlying ring of $\mathcal{A}$ is a field.
+
+{: .theorem-title }
+> Spectral Radius Formula
+>
+> For every Banach algebra element $x$ the spectral radius is given by
+>
+> $$
+> r(x) = \lim_{n \to \infty} \norm{x^n}^{1/n}.
+> $$
+> {: .katex-display .mb-0 }
+
+## Gelfand’s Theory
+
+Proposition
+Let $\mathcal{A}$ be a unital commutative Banach algebra.
+If $\phi$ is a nonzero multiplicative linear functional on $\mathcal{A}$,
+then its kernel $\ker \phi$ is a maximal ideal in $\mathcal{A}$.
+Every maximal ideal $\mathcal{I}$ in $\mathcal{A}$ is of the form
+$I = \ker \phi$ for some nonzero multiplicative linear functional $\phi$ on $\mathcal{A}$.
+
+In other words, the mapping $\phi \mapsto \ker \phi$ is gives a bijection
+between the sets of nonzero multiplicative linear functionals and maximal ideals.
+
+
+Definition
+The *maximal ideal space* $\mathcal{M}_{\mathcal{A}}$ of a unital commutative Banach algebra $\mathcal{A}$
+is the set of maximal ideals of $\mathcal{A}$; its topology is inherited from
+the weak* topology on the dual of $\mathcal{A}$ via the correspondece described above.
+
+Proposition
+The *maximal ideal space* of a unital commutative Banach algebra is a compact Hausdorff space.
+
+{% definition bla, blubb %}
+a
+b
+{% enddefinition %}
+
+
diff --git a/pages/operator-algebras/c-star-algebras/index.md b/pages/operator-algebras/c-star-algebras/index.md
new file mode 100644
index 0000000..adc1981
--- /dev/null
+++ b/pages/operator-algebras/c-star-algebras/index.md
@@ -0,0 +1,8 @@
+---
+title: C*-Algebras
+parent: Operator Algebras
+nav_order: 2
+has_children: true
+---
+
+# {{ page.title }}
diff --git a/pages/operator-algebras/c-star-algebras/positive-linear-functionals.md b/pages/operator-algebras/c-star-algebras/positive-linear-functionals.md
new file mode 100644
index 0000000..05b1d4f
--- /dev/null
+++ b/pages/operator-algebras/c-star-algebras/positive-linear-functionals.md
@@ -0,0 +1,39 @@
+---
+title: Positive Linear Functionals
+parent: C*-Algebras
+grand_parent: Operator Algebras
+nav_order: 1
+# cspell:words
+---
+
+# {{ page.title }}
+
+all algebra are assumed to be unital
+
+{: .definition-title }
+> Hermitian Functional, Positive Functional, State
+>
+> A linear functional on a $C^*$-algebra $\mathcal{A}$ is said to be
+>
+> - *Hermitian* if $\phi(x*) = \overline{\phi(x)}$ for all $x \in \mathcal{A}$.
+> - *positive* if $\phi(x) \ge 0$ for all $x \ge 0$.
+> - a *state* if $\phi$ is positive and $\phi(\mathbf{1}) = 1$.
+>
+
+{: .definition-title }
+> State
+>
+> A norm-one positive linear functional on a $C^*$-algebra is called a *state*.
+
+{: .definition-title }
+> State Space
+>
+> The *state space* of a $C^*$-algebra $\mathcal{A}$, denoted by $S(\mathcal{A})$, is the set of all states of $\mathcal{A}$.
+
+Note that $S(\mathcal{A})$ is a subset of the unit ball in the dual space of $\mathcal{A}$.
+
+{: .proposition }
+> The state space of a $C^*$-algebra is convex and weak* compact.
+
+{% proof %}
+{% endproof %}
diff --git a/pages/operator-algebras/c-star-algebras/states.md b/pages/operator-algebras/c-star-algebras/states.md
new file mode 100644
index 0000000..619bc9a
--- /dev/null
+++ b/pages/operator-algebras/c-star-algebras/states.md
@@ -0,0 +1,43 @@
+---
+title: States
+parent: C*-Algebras
+grand_parent: Operator Algebras
+nav_order: 1
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .definition-title }
+> Definition (State, State Space)
+>
+> A norm-one [positive linear functional]( {% link pages/operator-algebras/c-star-algebras/positive-linear-functionals.md %} ) on a C\*-algebra is called a *state*.\
+> The *state space* $S(\mathcal{A})$ of a C\*-algebra $\mathcal{A}$ is the set of all its states.
+
+Note that $S(\mathcal{A})$ is a subset of the unit ball in the dual space of $\mathcal{A}$.
+
+{: .corollary }
+> A linear functional $\omega$ on a C\*-algebra is a state
+> if and only if $\omega(\mathbf{1}) = 1 = \norm{\omega}$.
+
+{: .proposition }
+> The state space of a C\*-algebra is convex and weak\* compact.
+
+{% proof %}
+First, we show convexity.
+Let $\omega_0, \omega_1$ be states on $\mathcal{A}$ and let $t \in (0,1)$.
+Consider the convex combination $\omega = (1-t)\omega_0 + t\omega_1$.
+Clearly, $\omega$ is linear and $\omega(\mathbf{1}) = 1$.
+By the triangle inequality, $\norm{\omega} \le 1$.
+It follows from the lemma above that $\omega$ lies in $S(\mathcal{A})$. This proves that $S(\mathcal{A})$ is convex.
+
+Next we show weak\* compactness. Since $S(\mathcal{A})$ is contained
+in the closed unit ball in the dual of $\mathcal{A}$,
+which is weak\* compact by the
+[Banach–Alaoglu Theorem]({% link pages/functional-analysis-basics/banach-alaoglu-theorem.md %}),
+it will suffice to show that $S(\mathcal{A})$ is weak\* closed.
+Let $(\omega_i)$ be a net of states that weak\* converges to some bounded linear functional $\omega$ on $\mathcal{A}$.
+This means that $\omega_i(x) \to \omega(x)$ for every $x \in \mathcal{A}$.
+For all $i$ we have $\omega_i(x) \ge 0$ for $x \ge 0$ and $\omega_i(\mathbf{1}) = 1$; hence $\omega(x) \ge 0$ for $x \ge 0$ and $\omega(\mathbf{1}) = 1$. Thus $\omega$ is again a state.
+This shows that the state space is weak* closed, completing the proof.
+{% endproof %}
diff --git a/pages/operator-algebras/index.md b/pages/operator-algebras/index.md
new file mode 100644
index 0000000..2024202
--- /dev/null
+++ b/pages/operator-algebras/index.md
@@ -0,0 +1,7 @@
+---
+title: Operator Algebras
+nav_order: 4
+has_children: true
+---
+
+# {{ page.title }}
diff --git a/pages/quantum-field-theory/index.md b/pages/quantum-field-theory/index.md
new file mode 100644
index 0000000..0099c72
--- /dev/null
+++ b/pages/quantum-field-theory/index.md
@@ -0,0 +1,8 @@
+---
+title: Quantum Field Theory
+nav_order: 15
+has_children: true
+published: false
+---
+
+# {{ page.title }}
diff --git a/pages/quantum-field-theory/wightman-axioms/index.md b/pages/quantum-field-theory/wightman-axioms/index.md
new file mode 100644
index 0000000..ecc204e
--- /dev/null
+++ b/pages/quantum-field-theory/wightman-axioms/index.md
@@ -0,0 +1,13 @@
+---
+title: Wightman Axioms
+parent: Quantum Field Theory
+nav_order: 1
+has_children: true
+# cspell:words
+---
+
+# {{ page.title }}
+
+TODO:
+- Haag’s Theorem
+- Källén–Lehmann representation
diff --git a/pages/quantum-field-theory/wightman-axioms/scalar-field.md b/pages/quantum-field-theory/wightman-axioms/scalar-field.md
new file mode 100644
index 0000000..d37bcd0
--- /dev/null
+++ b/pages/quantum-field-theory/wightman-axioms/scalar-field.md
@@ -0,0 +1,19 @@
+---
+title: Scalar Field
+parent: Wightman Axioms
+grand_parent: Quantum Field Theory
+nav_order: 1
+# cspell:words
+---
+
+# Wightman Axioms
+
+Also known as *Gårding–Wightman axioms*.
+
+## Wightman Axioms for a Hermitian Scalar Field
+
+{: .axiom-title }
+> Axiom 1
+>
+> j
+
diff --git a/pages/spectral-theory/index.md b/pages/spectral-theory/index.md
new file mode 100644
index 0000000..d88fd6d
--- /dev/null
+++ b/pages/spectral-theory/index.md
@@ -0,0 +1,8 @@
+---
+title: Spectral Theory
+nav_order: 3
+has_children: true
+published: false
+---
+
+# {{ page.title }}
diff --git a/pages/spectral-theory/of-unbounded-operators/index.md b/pages/spectral-theory/of-unbounded-operators/index.md
new file mode 100644
index 0000000..0b2a6f9
--- /dev/null
+++ b/pages/spectral-theory/of-unbounded-operators/index.md
@@ -0,0 +1,9 @@
+---
+title: of Unbounded Operators
+parent: Spectral Theory
+nav_order: 1
+has_children: true
+# cspell:words
+---
+
+# {{ page.title }}
diff --git a/pages/spectral-theory/test/basic.md b/pages/spectral-theory/test/basic.md
new file mode 100644
index 0000000..8c42f6d
--- /dev/null
+++ b/pages/spectral-theory/test/basic.md
@@ -0,0 +1,59 @@
+---
+title: Test
+parent: Test
+grand_parent: Spectral Theory
+nav_order: 2
+description: >
+ The
+# spellchecker:words Steinhaus preimages Baire pointwise
+---
+
+# {{ page.title }}
+
+{: .definition-title }
+> Definition (resolvent operator, regular value, resolvent set, spectrum, spectral value)
+>
+> Let $T : \dom{T} \to X$ be an operator in a complex normed space $X$.
+> We write
+>
+> $$
+> T_{\lambda} = T - \lambda = T - \lambda I,
+> $$
+>
+> where $\lambda$ is a complex number and
+> $I$ is the identical operator on the domain of $T$.
+> If the operator $T_{\lambda}$ is injective,
+> that is, it has an inverse $T_{\lambda}^{-1}$
+> (with domain $\ran{T_{\lambda}}$),
+> then we call
+>
+> $$
+> R_{\lambda}(T) = T_{\lambda}^{-1} = (T - \lambda)^{-1} = (T - \lambda I)^{-1}
+> $$
+>
+> the *resolvent operator* of $T$ for $\lambda$.
+> A *regular value* of $T$ is a complex number $\lambda$ for which the resolvent $R_{\lambda}(T)$ exists,
+> has dense domain and is bounded.
+> The set of all regular values of $T$ is called the *resolvent set* of $T$ and denoted $\rho(T)$.
+> The complement of the resolvent set in the complex plane is called the *spectrum* of $T$ and denoted $\sigma(T)$.
+> The elements of the spectrum of $T$ are called the *spectral values* of $T$.
+
+{: .definition-title }
+> Definition (point spectrum, residual spectrum, continuous spectrum)
+>
+> Let $T : \dom{T} \to X$ be an operator in a complex normed space $X$.
+> The *point spectrum* $\pspec{T}$ is the set of all $\lambda \in \CC$
+> for which the resolvent $R_\lambda(T)$ does not exist.
+> The *residual spectrum* $\rspec{T}$ is the set of all $\lambda \in \CC$
+> for which the resolvent $R_\lambda(T)$ exists, but is not densely defined.
+> The *continuous spectrum* $\cspec{T}$ is the set of all $\lambda \in \CC$
+> for which the resolvent $R_\lambda(T)$ exists and is densely defined, but unbounded.
+
+| If $R_\lambda(T)$ exists, | is densely defined | and is bounded ... | ... then $\lambda$ belongs to the |
+|:-------------------------:|:------------------:|:------------------:|-----------------------------------|
+| ✗ | - | - | point spectrum $\pspec{T}$ |
+| ✓ | ✗ | ? | residual spectrum $\rspec{T}$ |
+| ✓ | ✓ | ✗ | continuous spectrum $\cspec{T}$ |
+| ✓ | ✓ | ✓ | resolvent set $\rho(T)$ |
+
+By definition, the sets $\pspec{T}$, $\rspec{T}$, $\cspec{T}$ and $\rho(T)$ form a partition of the complex plane.
diff --git a/pages/spectral-theory/test/index.md b/pages/spectral-theory/test/index.md
new file mode 100644
index 0000000..690750d
--- /dev/null
+++ b/pages/spectral-theory/test/index.md
@@ -0,0 +1,8 @@
+---
+title: Test
+parent: Spectral Theory
+nav_order: 1
+has_children: true
+---
+
+# {{ page.title }}
diff --git a/pages/tomita-takesaki-theory/index.md b/pages/tomita-takesaki-theory/index.md
new file mode 100644
index 0000000..dd2a312
--- /dev/null
+++ b/pages/tomita-takesaki-theory/index.md
@@ -0,0 +1,9 @@
+---
+title: Tomita Takesaki Theory
+nav_order: 10
+has_children: true
+published: false
+# cspell:words
+---
+
+# {{ page.title }}
diff --git a/pages/tomita-takesaki-theory/standard-subspaces.md b/pages/tomita-takesaki-theory/standard-subspaces.md
new file mode 100644
index 0000000..970c51a
--- /dev/null
+++ b/pages/tomita-takesaki-theory/standard-subspaces.md
@@ -0,0 +1,19 @@
+---
+title: Standard Subspaces
+parent: Tomita Takesaki Theory
+nav_order: 1
+# cspell:words
+---
+
+# {{ page.title }}
+
+{: .definition-title }
+> Definition (Cyclic, Separating, Standard Subspace)
+>
+> A closed real linear subspace $H$ of a complex Hilbert space $\hilb{H}$ is called
+> * *cyclic*, if $H+iH$ is dense in $\hilb{H}$,
+> * *separating*, if $H \cap iH = \braces{0}$, and
+> * *standard*, if $H$ is cyclic and separating.
+
+**Proof:**
+{{ site.qed }}
diff --git a/pages/unbounded-operators/adjoint-operators.md b/pages/unbounded-operators/adjoint-operators.md
new file mode 100644
index 0000000..a93e6d4
--- /dev/null
+++ b/pages/unbounded-operators/adjoint-operators.md
@@ -0,0 +1,15 @@
+---
+title: Adjoint Operators
+parent: Unbounded Operators
+nav_order: 1
+published: false
+description: >
+ The Hellinger–Toeplitz Theorem states that an everywhere-defined symmetric
+ operator on a Hilbert space is bounded. We give a proof using the Uniform
+ Boundedness Theorem. We give another proof using the Closed Graph Theorem.
+# spellchecker:dictionaries latex
+# spellchecker:words Hellinger Toeplitz innerp hilb Schwarz functionals enspace Riesz
+---
+
+# {{ page.title }}
+
diff --git a/pages/unbounded-operators/graph-and-closedness.md b/pages/unbounded-operators/graph-and-closedness.md
new file mode 100644
index 0000000..a9bf738
--- /dev/null
+++ b/pages/unbounded-operators/graph-and-closedness.md
@@ -0,0 +1,22 @@
+---
+title: Graph and Closedness
+parent: Unbounded Operators
+nav_order: 1
+description: >
+ The Hellinger–Toeplitz Theorem states that an everywhere-defined symmetric
+ operator on a Hilbert space is bounded. We give a proof using the Uniform
+ Boundedness Theorem. We give another proof using the Closed Graph Theorem.
+# spellchecker:dictionaries latex
+# spellchecker:words Hellinger Toeplitz innerp hilb Schwarz functionals enspace Riesz
+---
+
+# {{ page.title }}
+
+
+{: .definition-title }
+
+> Definition (Graph of an Operator)
+>
+> The *graph* of an operator $T$ in a Hilbert space $\hilb{H}$
+> is the set of all pairs $(x,y) \in \hilb{H}\times\hilb{H}$
+> where $x$ lies in the domain of $T$ and $y=Tx$.
diff --git a/pages/unbounded-operators/hellinger-toeplitz-theorem.md b/pages/unbounded-operators/hellinger-toeplitz-theorem.md
new file mode 100644
index 0000000..07d6b81
--- /dev/null
+++ b/pages/unbounded-operators/hellinger-toeplitz-theorem.md
@@ -0,0 +1,116 @@
+---
+title: Hellinger–Toeplitz Theorem
+parent: Unbounded Operators
+nav_order: 10
+description: >
+ The Hellinger–Toeplitz Theorem states that an everywhere-defined symmetric
+ operator on a Hilbert space is bounded. We give a proof using the Uniform
+ Boundedness Theorem. We give another proof using the Closed Graph Theorem.
+# cspell:words Hellinger Toeplitz Schwarz Riesz functionals
+---
+
+# {{ page.title }}
+
+Conventions:
+{: .mb-0 }
+
+- Hilbert spaces are complex.
+- The inner product is anti-linear in its first argument.
+- Operators are linear and possibly unbounded.
+
+Recall that an operator $T : D(T) \to \hilb{H}$ in a Hilbert space $\hilb{H}$
+is called *symmetric*, if is has the property
+
+$$
+\innerp{Tx}{y} = \innerp{x}{Ty} \quad \forall x,y \in D(T).
+$$
+
+{: .theorem-title }
+> Hellinger–Toeplitz theorem
+>
+> An everywhere-defined symmetric operator on a Hilbert space is bounded.
+
+Consequently, a symmetric Hilbert space operator
+that is (truly) unbounded
+cannot be defined everywhere.
+
+---
+
+## Proof using the Uniform Boundedness Theorem
+
+Assume that $T$ is not bounded.
+Then there exists a sequence $(x_n)$ of unit vectors in $\hilb{H}$
+such that $\norm{Tx_n} \to \infty$.
+Consider the sequence $(f_n)$ of linear functionals on $\hilb{H}$,
+defined by
+
+$$
+f_n(y) = \innerp{Tx_n}{y} = \innerp{x_n}{Ty} \quad y \in \hilb{H}.
+$$
+
+The second identity is due to the symmetry of $T$.
+Apply Cauchy-Schwarz to both expressions to obtain the inequalities
+
+$$
+\abs{f_n(y)} \le \norm{Tx_n} \norm{y}
+\quad \text{and} \quad
+\abs{f_n(y)} \le \norm{x_n} \norm{Ty}
+$$
+
+for each $n \in \NN$ and $y \in \hilb{H}$.
+The first inequality shows that the functionals $f_n$ are bounded.
+The second one shows that, for fixed $y$,
+the sequence $(\abs{f_n(y)})$ is bounded by $\norm{Ty}$,
+since $\norm{x_n} = 1$ for all $n$.
+By the [Uniform Boundedness Theorem]({% link
+pages/functional-analysis-basics/the-fundamental-four/uniform-boundedness-theorem.md
+%}), $(\norm{f_n})$ is a bounded sequence.
+One has
+
+$$
+\norm{Tx_n}^2 = \abs{f_n(Tx_n)} \le \norm{f_n} \norm{Tx_n} \quad n \in \NN.
+$$
+
+Divide by $\norm{Tx_n}$ (if nonzero)
+to obtain $\norm{Tx_n} \le \norm{f_n}$ for all but finitely many $n$.
+Thus $(\norm{Tx_n})$ is a bounded sequence,
+contradicting $\norm{Tx_n} \to \infty$.
+{{ site.qed }}
+
+---
+
+## Proof using the Closed Graph Theorem
+
+By the [Closed Graph Theorem]({% link
+pages/functional-analysis-basics/the-fundamental-four/closed-graph-theorem.md %}),
+it is sufficient to show that the graph of $T$ is closed.
+Let $(x_n)$ be a convergent sequence of vectors in $\hilb{H}$
+such that the image sequence $(Tx_n)$ converges as well.
+Naming the limits $x$ and $z$, respectively, we have
+
+$$
+x_n \to x
+\quad \text{and} \quad
+Tx_n \to z.
+$$
+
+Continuity of the inner product implies
+
+$$
+\innerp{x_n}{Ty} \to \innerp{x}{Ty}
+\quad \text{and} \quad
+\innerp{Tx_n}{y} \to \innerp{z}{y}
+$$
+
+for all $y \in \hilb{H}$.
+Since $T$ is symmetric,
+the first assertion can be rewritten as
+
+$$
+\innerp{Tx_n}{y} \to \innerp{Tx}{y}.
+$$
+
+A sequence of complex numbers has at most one limit,
+hence $\innerp{Tx}{y} = \innerp{z}{y}$ for all $y$.
+By the Riesz representation theorem, $Tx=z$.
+{{ site.qed }}
diff --git a/pages/unbounded-operators/index.md b/pages/unbounded-operators/index.md
new file mode 100644
index 0000000..54ad701
--- /dev/null
+++ b/pages/unbounded-operators/index.md
@@ -0,0 +1,7 @@
+---
+title: Unbounded Operators
+nav_order: 4
+has_children: true
+---
+
+# {{ page.title }}
diff --git a/pages/unbounded-operators/quadratic-forms.md b/pages/unbounded-operators/quadratic-forms.md
new file mode 100644
index 0000000..5831b88
--- /dev/null
+++ b/pages/unbounded-operators/quadratic-forms.md
@@ -0,0 +1,23 @@
+---
+title: Quadratic Forms
+parent: Unbounded Operators
+nav_order: 5
+published: false
+description: >
+ The Hellinger–Toeplitz Theorem states that an everywhere-defined symmetric
+ operator on a Hilbert space is bounded. We give a proof using the Uniform
+ Boundedness Theorem. We give another proof using the Closed Graph Theorem.
+# spellchecker:dictionaries latex
+# spellchecker:words Hellinger Toeplitz innerp hilb Schwarz functionals enspace Riesz
+---
+
+# {{ page.title }}
+
+
+{: .definition-title }
+
+> Definition (Graph of an Operator)
+>
+> The *graph* of an operator $T$ in a Hilbert space $\hilb{H}$
+> is the set of all pairs $(x,y) \in \hilb{H}\times\hilb{H}$
+> where $x$ lies in the domain of $T$ and $y=Tx$.